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GENERAL

This is the final report for a three-year grant with the Flow Modeling and Control

Branch at NASA Langley. Mr. William Sellers was the technical monitor for the project. The

effort actually consisted of three one-year projects with the following titles:

First year: "Application of Artificial Neural Networks to the Calibration of the 5-Hole

Probe"

Second year: "'Extension of the Neural Network Probe Calibration Code, PROBENET, to

various shapes of 5- and 7-Hole Probes and Reynolds Number Effects ".

Third Year: "Extension of the Multi-Hole-Probe Measurement Capabilities to High-Shear

and Near- Wall Flows ".

Annual reports at the end of each year were also submitted. The title and the contents

of the present report are such that they summarize the results of the three-year effort.

Two new calibration algorithms were developed for the calibration of non-nulling

multi-hole probes in compressible, subsonic flowfields. The reduction algorithms are robust

and able to reduce data from any multi-hole probe inserted into any subsonic flowfield to

generate very accurate predictions of the velocity vector, flow direction, total pressure and

static pressure. One of the algorithms PROBENET is based on the theory of neural networks,

while the other is of a more conventional nature (polynomial approximation technique) and

introduces a novel idea of local least-squares fits. Both algorithms have been developed to

complete, user-friendly software packages.

New technology was developed for the fabrication of miniature multi-hole probes,

with probe tip diameters all the way down to 0.035". Several miniature 5- and 7-hole probes,

with different probe tip geometries (hemispherical, conical, faceted) and different overall

shapes (straight, cobra, elbow probes) were fabricated, calibrated and tested. Emphasis was

placed on the development of four stainless-steel conical 7-hole probes, 1/16" in diameter

calibrated at NASA Langley for the entire subsonic regime. The developed calibration

algorithms were extensively tested with these probes demonstrating excellent prediction

capabilities. The probes were used in the "trap wing" wind tunnel tests in the 14'x22' wind

tunnel at NASA Langley, providing valuable information on the flowfield over the wing.

This report is organized in the following fashion. It consists of a "Technical

Achievements" section that summarizes the major achievements, followed by an assembly of

journal articles that were produced from this project and ends with two manuals for the two

probe calibration algorithms developed.





TECHNICAL ACHIEVEMENTS

The multi-hole pressure probe is a cost effective, robust and accurate instrument for

three-dimensional velocity and pressure measurements in a wide range of flowfields. For

steady-state measurements, 5- and 7-hole probes are capable of resolving flow angularities up

to approximately 75 degrees and predict the flow conditions with high accuracy. Although

powerful, measurement techniques such as Laser Doppler Velocimetry (LDV) and Particle

Image Velocimetry (PIV) have a number of disadvantages compared to multi-hole probes.

LDV and PIV require the use of costly components, such as expensive lasers and optical

equipment. Both methods are complex and require painstaking aligmnent of lasers and optical

equipment to obtain accurate flow measurements, and it is often hard to get good results

outside the laboratory environment.

Since multi-hole pressure probes are intrusive flow-diagnostics instruments, concerns

of probe interference with the flows it is trying to measure always arise. For example, in the

case of leading-edge vortical flows over delta wings, the presence of the probe in the

neighborhood of the vortex core can induce premature vortex breakdown t. Therefore, a strong

incentive exists to reduce the probe size, thus reducing the interference. Concurrently, probe

size reduction offers higher spatial resolution, for measurements in high-shear flows. Also,

when measuring near a surface, a distance of at least four probe diameters should be
maintained in order to avoid wall effects. Smaller probes can measure closer to the surface

without violating this proximity rule. However, probe size reduction presents fabrication as

well as frequency response challenges. In terms of fabrication, probe tip surface quality is

important in measurement accuracy. For two different calibration surfaces, the smoother

surface typically yields higher prediction accuracies. This is self-evident if one considers the

fact that typical interpolation techniques use smooth continuous functions to locally model the
calibration surface. The smoothness of the calibration surface depends, in turn, on the tip

surface quality. Maintaining the same relative tip surface roughness (average tip surface

imperfection size divided by the probe diameter) becomes a fabrication challenge as the probe

diameter decreases. For the present work we were able to reduce the probe diameter to as low

as 0.035", maintaining the same high surface quality of typical 0.125" diameter probes.

Details on these technical developments are given in our journal article in Appendix A.

In a different challenge, as the probe diameter decreases, the tubing frequency

response decreases. We have developed a simple technique to correct for the pressure

measurement error produced in miniature multi-hole pressure probes due to the lag in the

response of the probe tubing system. As the size of the pressure probe is reduced in order to

reduce flow disturbance, the probe's frequency response deteriorates. Reduced frequency

response generally causes the "wait" times in flow-mapping experiments to increase. The
"wait" time is the time that the probe, after it moves to a new measurement location in the

flow field, has to wait before data-acquisition can be performed, in order for the pressures at

the probe pressure transducers to reach steady state. Moreover, deterioration of probe

frequency response limits its capability to resolve temporal information in unsteady flows. In

the present work we introduce a simple algorithm that significantly improves a probe's

frequency response. Detailed work in the area was carried out by WhitmoreL He developed a

mathematical model for a tubing system, derived from the Navier-Stokes and continuity

equations. Based on this model, he then developed an algorithm to compensate for pneumatic

distortion. The technique presented here is simpler, much less computationally intensive and





is thus amenableto real-timeimplementation.It should,however,be pointed out that the
techniquepresentedherein is applicableonly to critically-dampedor over-dampedtubing
systems,asdiscussedin the accompanyingpublication.Details on the developedtechnique
aregivenin ourjournal articlein AppendixB.

Probe calibration is generallyperformedby placing the probe in a flowfield with
known velocity magnitudeanddirection. The probe is pitched and yawed (or conedand
rolled) througha rangeof angles,to coverthe rangeof possiblevelocity vectororientations.
For eachprobeorientationthepressuresfrom the five (or seven)pressureportsarerecorded.
This procedureis typically performedfor angle incrementsof 2 to 5 degrees,resulting in
approximately1000to 3000discretecalibrationpoints,for aconeanglerangeof 0° to 75° and
theentireroll anglerange(0° to 360°).

After the probe has been calibrated it can be used to measure the flow properties in an

unknown flowfield. By measuring the probe port pressures at a point and "comparing" them

to the calibration data, estimates of the flow angles and the velocity magnitude can be made.

This "comparison" process is achieved by the calibration algorithm. In the present work, a
neural network based calibration algorithm was successfully developed. Artificial neural

networks have been effectively applied to mechanical and control systems. In aerodynamics,

networks have proven their worthiness both as installed components in the aircraft control

systems as well as research tools to investigate, model and control fluid flows 35. Neural

networks were coupled with flow measurement tools such as an omni-directional pressure

probe to investigate separated and recirculating flows 6. In the present work, a novel neural
network calibration scheme has been formulated for use in the calibration of multi-hole

pressure probes (5-hole or 7-hole). This procedure utilizes a large database of calibration

information taken over a large range of flow cone angles (up to 75 degrees). The calibration

data is then used to train a multi-layer neural network to predict the flow variables based on

calculated pressure coefficients. During the training process, a Network Information file is

generated that contains the necessary details of the network weights and biases. Subsequently,

test data presented to the network is processed in a feedforward mode to predict the flow

direction and magnitude based on the network's knowledge. This versatile technique allows

for non-uniform calibration grids, dense calibration grids and updating of the calibration data,

provides high prediction accuracy and is very fast in the feedforward mode. Also, the speed in

the feedforward mode is independent of the size of the calibration file in contrast to

conventional local interpolation algorithms 6'7 of similar accuracy, whose speed is highly

dependent on the size of the calibration data file. Moreover, the size of the feedforward code

is on the order of a hundred lines, rendering interfacing with existing user codes (such as data-

acquisition and data post-processing codes) extremely easy.

Researchers in the flight-test community have used the principles of multi-hole probes

to develop flush air data systems TM. In these systems, the nose of the aircraft is instrumented

with multiple pressure ports, strategically positioned, and in essence operates as a giant multi-

hole probe. In some efforts, neural networks have been successfully used, even in real-time, to
extract air data information from the pressure measurements 12, with speeds similar to the

algorithm presented here. These air data systems have a different port arrangement than

typical 5 and 7-hole probes, a higher number of ports and are not plagued by calibration issues

that emerge as a result of miniaturization. Such an issue for example is the transportability of

the calibration from one system to another. For the miniature probes discussed here,

calibration transportability, without compromising measurement accuracy, is not an option





andeachprobehasto becalibratedindividually. This is dueto the fact that the effect of the
probemanufacturingdefectson the calibration is inverselyproportional to the size of the
probe. Details on our novel neural network algorithm are given in our journal paper in
AppendixA.

In a different approach,a different probe calibration algorithm was developed,
employing regional polynomial fit and local least-squares(LLS) calibration data point
interpolation. Using only a few selectedcalibration data points that have similar angle
coefficients as the measuredanglecoefficients,a low-orderpolynomial fit is created.The
calibratedprobecanbe insertedinto an unknownfiowfield andthe port pressuresfrom the
probearerecordedandcomparedwith theport pressuresin thecalibrationfile throughasetof
non-dimensionalpressurecoefficients. When the N most similar pressuresignaturesare
locatedin thecalibrationdatabase,four low orderleastsquarespolynomials(for thetwo flow
anglesandthe total andstaticpressurecoefficients)arecreatedusingthosedatapoints in the
calibrationdatabase.Using thesepolynomials,the two flow anglesand the total and static
pressurecoefficients, for the test point, are determined.From the total and static pressure
coefficientsthe local total and static pressuresare determined.The predictedanglesof the
flow are relativeto the probe coordinatesystem.To get the anglesrelative to the testarea
coordinatesystema simpletransformationis performedusingtheprobemounting geometry.
The velocity magnitudeand Mach numberarecalculatedfrom the total and static pressure
coefficientsusingadiabatic,perfectgas laws. It shouldbe notedherethat knowledgeof the
local total temperatureis also required; however for the flows of interest here the total
temperatureis approximatelyconstantandequalto thefree-streamtotal temperaturewhich is
measuredandknown.Thusthevelocity vector,bothmagnitudeanddirectioncanbe found for
anyunknownsubsonicflowfield. Four miniature7-holeprobesweredesignedandbuilt. They
were subsequentlycalibratedat the NASA Langley Flow Modeling and Control Branch.
Details on the developedhardwareand softwaredescribedabove aregiven in our under-
reviewjournal paperin Appendix C. The work describesthecalibrationand data reduction
procedures,MachandReynoldsnumbereffectson the calibrationanda detaileduncertainty
analysis.Someimportantresultsaresummarizedbelow.

The non-dimensionalangle and pressurecoefficients used internally in the data
reductionalgorithmhaveanalmostnegligible dependenceon Reynoldsnumberand a more
pronounced dependenceon Mach number.A test point at a certain Mach and Reynolds
numbercanbereducedwith calibrationdatatakenatcompletelydifferentMachandReynolds
numbersandstill predict the velocity vector,both magnitudeand directionwith reasonable
accuracy.Howeverreducingtestdatawith a calibrationfile at the sameMach and Reynolds
number will yield the most accuratepredictions.Thus to obtain high prediction accuracy
throughouttheentiresubsonicregime,it is necessaryto calibratetheprobeat awide rangeof
MachandReynoldsnumber.

An uncertaintyanalysisof the 7-hole probe measurementswas performed. Three
procedureswere followed to determinetheuncertainty:a combinedanalyticaland numerical
analysisof how uncertaintiesin the pressuremeasurementspropagatethroughthe algorithm,
uncertaintyevaluationof theLLS surfacefitting procedureandevaluationof the uncertainty
of the algorithmusing dataverification test files. The results from the surface fit analysis
showedthatthecontributingerrorsdueto just thelocal least-squaressurfacefit arenegligible.
Theseuncertaintieswere on the order of 10.5degreesfor anglecalculationsand 10.3percent
for velocity magnitudecalculations.Both the analysisof the error propagationthrough the





algorithm and the uncertainty evaluationwith test verification files gave similar results.
Anglescanbepredictedto within 0.6degreeswith 99% confidenceandvelocity magnitudes
can be predicted to within 1.0 % also with 99 % confidence,while the corresponding
uncertainties(standarddeviation of the error distribution)are lessthan0.2 degreesin angle
predictionandlessthan0.35%in velocity magnitudeprediction.

AppendicesD and E provides operation manuals for the two probe calibration
algorithms,the neural-network-basedalgorithm,PROBENET,and the Local-LeastSquares
(LLS) algorithm,respectively.
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Miniature Multihole Pressure Probes and Their
Neural-Network-Based Calibration

Othon K. Rediniotis* and Rajesh Vijayagopal t

Texas A&M University, College Station, Texas 77843-3141

We present the development of miniature multihole pressure probes and a novel neural-network-based calibra-

tion algorithm for them. Seven.hole probes of tip diameters as low as 0.035 in. (0.9 mm) were successfully fabricated
with high tip surface quality. Any of the typical probe tip geometries, i.e., hemispherical, conical, or faceted, could
be fabricated. The miniature probes were calibrated and tested in a wind tunnel. A backpropagation-based neural-

network calibration algorithm was developed for these probes, with flexibility in network architecture design and
network self-optimization capabilities, in the feedforward mode the algorithm yields computational speeds an
order of magnitude higher than those typically achieved by similar accuracy interpolation algorithms. The new
algorithm has prediction accuracies of 0.28 deg in the flow angles and 0.35% in the velocity magnitude.
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Nomenclature

As = static pressure coefficient

A, = total pressure coefficient

B, = cone-angle pressure coefficient

B_, = pitch-angle pressure coefficient

Br = roll-angle pressure coefficient

B,. = yaw-angle pressure coefficient

C_, = generic pressure coefficient; could stand

for any of Bl,, B,, B_,, B_, At, A_
E = error vector

= sum-squared error

f,h = activation function for node i on layer h

1 = identity matrix
J = error Jacobian matrix

o_ = output of node i on layer h

Pi = pressure reading at orifice i of the probe

p+ = pressure reading at peripheral port adjacent to port i, in

the clockwise direction when looking into the probe tip

p- = pressure reading at peripheral port adjacent to port i,

in the counterclockwise direction when looking

into the probe tip

characteristic of dynamic pressure

weight applied to the connection to node i on layer h from

node j on layer h - 1

sum of node weighted inputs

pitch flow angle; momentum coefficient

yaw flow angle
error sensitivity per node

uncertainty in the calculation of C,

uncertainty in the measurement of pressure Pi
learning rate coefficient

cone flow angle

roll flow angle

I. Introduction

VER the years multihole probes, such as five- and seven-hole
probes, have established themselves as some of the easiest-to-

use and cost-effective devices for three-component velocity mea-

surements in research as well as industry environments. They pro-
vide accurate flow measurements for flow angles up to 75 deg and
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are inexpensive and robust. Furthermore, to minimize flow distur-

bance, probes of small diameter can be fabricated. Because of their

small size, irregularities in manufacturing are unavoidable, which

requires that each probe be calibrated individually. Unless the probe

tip is physically damaged, it will maintain its structural character-
istics, and therefore only one initial calibration is required for the

lifetime of the probe.

Because multihole pressure probes are intrusive flow-diagnostics
instruments, concerns of probe interference with the flows they are

trying to measure always arise. For example, in the case of leading-

edge vortical flows over delta wings, the presence of the probe in
the neighborhood of the vortex core can induce premature vortex

breakdown. _Therefore, a strong incentive exists to reduce the probe

size, thus reducing the interference. Concurrently, probe-size reduc-
tion offers higher spatial resolution for measurements in high-shear

flows. Also, when measuring near a surface, a distance of at least four
probe diameters should be maintained to avoid wall effects. 2 Smaller

probes can measure closer to the surface without violating this prox-

imity rule. However, probe-size reduction presents fabrication as

well as frequency response challenges. In terms of fabrication, probe

tip-surface quality is important in measurement accuracy. For two

different calibration surfaces the smoother surface typically yields

higher prediction accuracies. This is self-evident if one considers

the fact that typical interpolation techniques use smooth continuous

functions to locally model the calibration surface. The smoothness

of the calibration surface depends, in turn, on the tip-surface qual-

ity. Maintaining the same relative tip-surface roughness (average

tip-surface imperfection size divided by the probe diameter) be-

comes a fabrication challenge as the probe diameter decreases. For

the present work we were able to reduce the probe diameter to as low

as 0.035 in. (0.9 mm), maintaining the same high surface quality of

typical 0.125-in. (3.17-mm)-diam probes. In a different challenge,

as the probe diameter decreases, the tubing frequency response de-

creases. Because this is beyond the scope of the present work, for a
treatment of this problem the reader is referred to Vijayagopal et al. 3

Probe calibration is generally performed by placing the probe in

a flowfield with known velocity magnitude and direction. The probe

is pitched and yawed (or coned and rolled) through a range of an-

gles to cover the range of possible velocity vector orientations. For

each probe orientation the pressures from the five (or seven) pres-

sure ports are recorded. This procedure is typically performed for

angle increments of 2-5 deg, resulting in approximately 1000-3000

discrete calibration points, for a cone-angle range of 0-75 deg and

the entire roll-angle range (0-360 deg).
After the probe has been calibrated, it can be used to measure the

flow properties in an unknown flowfield. By measuring the probe

port pressures at a point and comparing them to the calibration data,

estimates of the flow angles and the velocity magnitude can be made.

This comparison process is achieved by the calibration algorithm.
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In the present work a neural-network-based calibration algorithm

was successfully developed. Before we present it, a brief overview

of different types of calibration algorithms used in the past is given
next.

For hemispherical probe tips one calibration method used the po-

tential flow solution for flow over a sphere to relate flow angle and

velocity to pressure differentials measured by the probe. 4 The tech-

nique was demonstrated by calibrating a hemispherical-tip five-hole

probe. This method can be sensitive to construction defects of the

probe tip and is generally accurate to only a few degrees at best. Inter-

polation techniques are widely used with multihole probe calibration

data. Zilliac, 5 in his calibration of conical seven-hole probes for use

in flows with large angularity, used the Akima (IMSL subroutine)

interpolation procedure. For each calibration point the seven probe

pressures and the total pressure are recorded along with the calcu-

lated pressure coefficients and the known roll and cone (or pitch and
yaw) angles. Then, when test data are collected, the relevant coeffi-

cients are calculated and compared to the stored calibration database.

By locating calibration points with pressure coefficient values sim-
ilar to the measured coefficients, the approximate flow conditions

are identified. The adjacent coefficient values are then interpolated

to yield the precise flow properties. The technique yields good ac-

curacy. However, the present authors' experience with the Akima

interpolation procedure is that it is time consuming. This procedure

is not suitable especially for applications, like air-data systems for

example, where tens of readings per second are necessary.

Alternatively, empirical relationships can be derived in terms of

the pressure coefficients over the different flow regions of the probe. 6

In Ref. 6 the measurement regions of a five-hole probe were divided

into the low-angle regime and four high-angle regimes correspond-

ing to the center hole and each one of the four peripheral holes,

respectively. The calibration data were used to derive empirical re-

lationships representing the pitch and yaw angles of the velocity

vector in terms of the measured pressure coefficients for five-hole

hemispherical probes. Using a fixed number of points, polynomial

curve fits were made through the known calibration points to de-
scribe the variation of the flow variables over the measurement do-

main. Rediniotis et al. 7 derived bicubic polynomial fits through the

calibration data for a conical seven-hole probe. Further, they in-

creased the number of regions for which polynomials were iden-

tified. This resulted in eight low-angle regions and 32 high-angle

regions, thus improving the description of the probe measurement

domain. This technique guarantees agreement with the calibration

points but does not necessarily ensure well-behaved calibration sur-

faces between calibration points.

Artificial neural networks have been effectively applied to me-

chanical and control systems. In aerodynamics, neural networks

have proven their worthiness both as installed components in the air-

craft control systems as well as research tools to investigate, model,

and control fluid flows. 8- io Neural networks were coupled with flow

measurement tools such as an omnidirectional pressure probe to in-
vestigate separated and recirculating flows. _t In the present work

a novel neural-network calibration scheme has been formulated

for use in the calibration of multihole pressure probes (five-hole

or seven-hole). This procedure uses a large database of calibra-

tion information taken over a large range of flow cone angles (up

to 75 deg). The calibration data is then used to train a multilayer

neural network to predict the flow variables based on calculated

pressure coefficients. During the training process, a network infor-

mation file is generated that contains the necessary details of the

network weights and biases. Subsequently, test data presented to

the network are processed in a feedforward mode to predict the flow

direction and magnitude based on the network's knowledge. This

versatile technique allows for nonuniform calibration grids, dense

calibration grids, and updating of the calibration data, provides high

prediction accuracy, and is very fast in the feedforward mode. Also,

the speed in the feedforward mode is independent of the size of

the calibration file in contrast to conventional local interpolation

algorithms 5,1_ of similar accuracy, whose speed is highly depen-
dent on the size of the calibration data file. Moreover, the size of

the feedforward code is on the order of a hundred lines, rendering

interfacing with existing user codes (such as data-acquisition and

data postprocessing codes) extremely easy.

Researchers in the flight-test community have used the princi-
ples of multihole probes to develop flush air-data systems. 12-15 In

these systems the nose of the aircraft is instrumented with multiple

pressure ports, strategically positioned, and in essence operates as

a giant multihole probe. In some efforts neural networks have been

successfully used, even in real time, to extract air-data information
from the pressure measurements) 6 with speeds similar to the algo-

rithm presented here. These air-data systems have a different port

arrangement than typical five- and seven-hole probes, a higher num-

ber of ports, and are not plagued by calibration issues that emerge as

a result of miniaturization. Such an issue, for example, is the trans-

portability of the calibration from one system to another. For the

miniature probes discussed here, calibration transportability, with-

out compromising measurement accuracy, is not an option, and each

probe has to be calibrated individually. This is because the effect

of the probe manufacturing defects on the calibration is inversely

proportional to the size of the probe.

II. Miniature Pressure Probe Fabrication

In what follows the probe diameter range indicated by "miniature"
is between 0.035 and 0.065 in. (0.9 and 1.65 mm). The construction

of probes can be divided into the fabrication of internal and external

features. The external features define the geometry exposed to the

flow. The internal features define the discreet pressure channels that

transmit the pressure from the probe tip to the pressure transducers.

External Features

Figure 1 illustrates the arrangement of the probe components.

Probe tips are typically made of brass, with the exception of the

smallest probe (0.035 in. or 0.9 mm in diameter). There are three
parameters defining the tip geometry and features: 1) diameter

(0.035-0.065 in. or 0.9-1.65 mm), 2) shape (conical, hemispher-

ical, faceted), and 3) number of holes (5 or 7). The first extension

(Fig. 1) precisely matches the outside diameter of the tip and is

typically up to 20 diameters long. Ferrules gradually increase the

outside diameter of the probe shaft, providing the strength of ma-

terial necessary for a given length. If needed, a second extension

can be added, creating a very long probe for special applications.

Mounts are typically hexagonal to allow for probe roll referencing

with the flat surfaces aligned with the hole pattern of the tip.

Internal Features

Each of the holes in the probe tip leads to a stainless-steel tube

with its inside diameter matching the diameter of the hole. As the

probe shaft diameter increases, each tube is telescoped into a larger

tube, which finally protrudes from the back of the mount. Each con-
nection is soldered and tested for strength and leakage. The final

assembly is also tested for pressure cross-talk, i.e., pneumatic com-

munication between two or more probe holes and their associated

tubing. Pictures of the miniature probes fabricated at the Aerospace

Engineering Department of Texas A&M University are shown in

Figs. 2a-2g. Figure 2a shows a probe with conical tip, 0.035 in.

(0.9 mm) in diameter, whereas Fig. 2b shows a faceted tip, 0.065 in.

( 1.65 mm) in diameter (in all pictures, the coin is a dime). Figure 2c is

an assortment of probes with conical and hemispherical tips, 0.035,

0.065, and 0.125 in. (or 0.9, 1.65, and 3.17 mm) in diameter. Fig-

ures 2d-2f show different zoomed-in views of a probe with a conical

tip, 0.04 in. (1 mm) in diameter. Figure 2g shows the end view of a

hemispherical five-hole probe with tip diameter 0.065 in. ( 1.65 ram).

/- T_p

/// - First E×ter_sio_n

_/// _ FerruLe

/_ Secord [xte_sio_

_/ Ferrule

Fig. I Schematic of miniature probe assembly.
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a) b)

c)

d) e)

g)

Miniature probe pictures: a) probe with conical tip, 0.035 in.

(0.9 mm) in diameter; b) faceted probe tip, 0.065 in. (1.65 mm) in diam-

eter; c) assortment of probes with various tip geometries; d) electron

microscope picture of probe with conical tip, 0.04 in. (1 ram) in diam-

eter; e) and f) closer tip views for the probe of Fig. 2d; and g) electron

microscope picture of hemispherical tip, 0.065 in. (1.65 mm) in diameter.

Fig. 3 Seven-hole measurement

domain divided into seven sec-

tors, each centered on an individ-

ual pressure port numbered 1-7. "A ii,

III. Probe Calibration Background

A brief overview of the probe calibration theory is given next for

the case of the seven-hole probe. The flow over a seven-hole probe

can be typically divided into two regimes: low-angle and high-angle

flow. The low-angle flow regime is defined as the velocity inclina-

tion range for which the pressure registered by hole #1 (Fig. 3) is

the highest among the seven measured pressures. The flow remains

attached over the entire probe: therefore, a unique set of seven pres-

sures exists at every probe orientation with respect to the flow. The

Fig. 4 Flow angle and probe coordinate system definition.

orientation of the probe with respect to the flow is defined by two

angles: the pitch-angle ot and the yaw-angle ,6 (Fig. 4). For high-

angle flows the ith hole registers the maximum pressure Pi, where

i takes a value from 2 through 7. The flow may not be attached

over the entire probe. For high-angle flows the position of the probe

with respect to the flow is more conveniently defined in spherical

coordinates. The two orientation angles are the cone-angle 0 and

the roll- angle 4' (Fig. 4).

At every measurement location in a flow-mapping experiment, the
local velocity vector can be fully characterized by four variables.

In the low-angle regime the variables are pitch-angle a, yaw-angle

/_, total pressure coefficient A,, and the static pressure coefficient

A,. In the high-angle regime the four variables are cone-angle 0,

roll-angle _b, and the pressure coefficients A t and A_. Knowledge

of the local temperature is also required; however, for the flows of

interest here the temperature is constant and equal to the freestream

temperature, which is measured and known. The four variables need

to be determined as functions of the measured pressures or the two

nondimensional pressure coefficients formed from these pressures:

Bp, By for low-angle flow and B,., Br for high-angle flow. The
definitions are as given next.

Low-Angle Regime (Sector 1)

Independent (Input) Variables:

1 (p7d-P5 -- P4 - P6)

B/, = _" q

n_ -

(P2 -- P3) (P6 -- P5 -'l- P7 -- P4)
+

q 2"q

(I)

Dependent (Output) Variables:

(Pl - P,) (Pl - P,)
At -- A, --

q q
(2)

Pitch-angle, a Yaw-angle, fl

where q = pl - [(p2 + p3 + p4 + P5 + P6 + p7)/6], p, is the local
total pressure, and p, is the local static pressure.

High-Angle Regimes (Sectors 2-7)

Independent (Input) Variables:

(Pi - Pl) (P+ - P-)
B, = ---- B, - (3)

q q

Dependent (Output) Variables:

(Pi -- Pt) (Pi - P.,)
A, -- , As -

q q
(4)

cone-angle, 0 roll-angle, 4_

where q = Pi - [(P+ + P- )/2] and Pi is the highest measured pres-

sure (at the ith port). Looking into the probe tip, p+ and p are the
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pressures measured by the peripheral holes adjacent to port i in the

clockwise and counterclockwise direction, respectively.

IV. Artificial Neural-Network Architecture,

Training, and Optimization

Network Architecture

An artificial neural network is composed of processing elements

called nodes, with each node having several input branches but only

one output branch. Each input connection to a node has a weight

associated with it. The input values are multiplied by the associated

weights and summed together with a node bias value. An activa-

tion function then acts on the summed value producing the output
value for the node. An artificial neural network is built of several

layers of nodes with the first layer typically having as many nodes as

there are input variables. The number of middle or hidden layers is

application dependent. Figure 5 shows a typical network structure,

which could be used to train and predict the pitch-angle. All of the

node interconnections are shown. The input layer accepts two in-

put elements. There are two hidden layers and one output layer. The
output of each node in a layer serves as input to the nodes of the next

layer. In Fig. 5, fl-f9 are the activation functions applied at each
node.

A node's output o_ is given by

x_ E h h-'= w,,oj , =
J

where superscript h denotes the layer number, subscript i denotes

the node in question, and subscript j denotes the node in the previous

(h - 1) layer.

The artificial neural-network algorithm that has been developed

uses coefficients calculated from probe calibration pressure data for

the training of a set of neural networks. For the seven-hole probe

each network uses two system inputs, the two pressure coefficients

B,, (or B,), By (or &), and four system outputs, A,, A,, pitch ot (or

cone 0), and yaw/3 (or roll cp) angles. A large training set of data

containing cone and roll angles and the pressure information is taken
using a calibration apparatus.L* The pressures are reduced to the

relevant pressure coefficients. The network uses this information as

its training data and, through a training algorithm, adjusts its weights

to minimize the resultant error between the predicted and the exact

values of the outputs. Once the network is trained, measured pressure

data that may or may not coincide with the training data can be input

to the network, which then predicts the flow variables (velocity and

angles) corresponding to the measured pressures.

If the high-angle sectors were further split up to improve the

description of the measurement domain as shown in Fig. 6, higher

prediction accuracy could be achieved. This was expected from our

previous neural-network experience in which it became repeatedly

obvious that, the more complicated the function to be represented

and the bigger its definition domain, the harder the task of finding

a neural network with high modeling accuracy. So the high-angle

Pitch Angle

_bias

layer_bia s

layer 1 __

Bi Bz

Fig. 5 Typical network structure that takes a two-element input to

train for and predict the pitch-angle.

Fig. 6

mance.

II

Seven-hole domain split up to enhance neural-network perfor-

sectors were first split into low-high and high-high regimes. The

high-high regimes were further split laterally (in roll). For example,

sector 2 of Fig. 3 was replaced by three such subsectors in Fig. 6:2

(low-high), and 13, 14 (high-high). In this way a seven-hole probe

was split up to have as many as 19 sectors. Care was taken to ensure

that there was at least a 5-deg overlap (in cone and roll) between

adjacent sectors. This is done to deal with calibration and test points

that lie near the borders of adjacent sectors.

Artificial Learning
An artificial neural network learns by adjusting the values of its

weights through a training process. The training process consists of

giving the neural-network sample input-output data pairs and letting

the neural-network algorithm adjust the weights until it can produce

the correct output for each input. This procedure is called supervised

learning. Backpropagation is one method of self-correction. During

this process, input is applied to the first layer of a neural network

and propagated through until an output is generated at the last layer

of the neural network. The output obtained through forward propa-

gation is then compared with the desired output to generate an error

signal. The error is then distributed back to the nodes of the previ-

ous layer according to their contribution to the error. This process is

repeated for all layers, updating the weights. The neural network is

iteratively trained with several input-output vector sets until it has

all of the training data encoded into it. Once the network has cor-

rectly encoded the training data, it can process input data according

to the parameters set forth by the training process. It is important

to note that the trained neural network will perform only as well

as the training data allows. For this reason, care should be taken in

selecting the set of training vectors.

Typically, the question of error convergence to a local or global

minimum arises. If the backpropagation algorithm converges to a
local minimum, learning will then cease, and the error of the net-

work output may be unacceptably high. Two simple methods of
dealing with this circumstance are to increase the number of hid-

den layers or to start over the training process with a different set
of initial weights. When the backpropagation algorithm does reach

an acceptable solution, there is no guarantee that it has reached the

global minimum. But as long as the solution is acceptable from an
error standpoint, convergence to a local minimum is irrelevant. To

avoid the situation of the algorithm converging to a local minimum

without reaching a desired minimum error, momentum learning was

implemented in the code. Momentum learning allows the network

to respond, not only to the local gradient of the error surface, but

also to recent trends in the error surface. The algorithm is thus less

likely to get trapped in local minima. To speed up convergence,

adaptive learning was also implemented. Adaptive learning allows

the learning rate to vary depending on the output error. This allows

the network to adapt the learning rate to the local terrain of the er-

ror surface. When a larger rate is possible for stable learning, the

rate is increased. When smaller learning rate is required, the rate is

automatically decreased.

The training algorithm accepts as its input a raw pressure data file

containing the calibration data for the probe. This data file is then

converted to training vector files for every sector of the probe. The

training vector files are used to train the neural networks by back-

propagation. Weight initialization is performed either by generating

random weights or by using existing weights files from previously

trained similar networks. During training, the weight matrices are

updated using a steepest descent technique to progress toward the
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minimum error. The error is calculated at each node on the output

layer as the difference in the predicted and known outputs:

dI,"(x,"),,
aku - _ _o,-known) (6)

where ,Skn is the error sensitivity for node k on the output layer H.

The error is backpropagated through the network by the following
recurrence relation 17-2(i.

- d l.- i h=2..H (7)

For each of the nodes in the hidden layers, 6,n represents the contri-

bution of error to the network output. The weight changes at each

node are then calculated by the following learning rule_X:

A,4¢t + ,) = + - ' (8)

where Aw_j (t) is the change in weights for layer h at iteration t, o_ - i
is the output of node j on layer h - 1, and 3_o_ - _ is the estimated
error gradient calculated for each weight, which can be expressed as

_k

_

As already mentioned, to aid in convergence a momentum term

is used to dampen the oscillations in the convergence and the

adaptive learning rate term, _7 is used as a type of dynamic over-

and under-relaxation for updating the weight matrices. The learning

rate is increased, and the weights are updated after each iteration
that reduces the sum-squared error g' of the network. After each

unsuccessful iteration the learning rate is decreased, and the weight

changes are discarded.
To further improve the convergence rate, the Levenberg-

Marquardt optimization method was implemented2_:

AW = (jrj + kl)-_jrE (10)

Here J is the error Jacobian matrix consisting of the partial deriva-
tives of the error terms with respect to the node weights, k is a scalar,

and E is the error vector determined from the known vector output
ard the network calculated values. When k is large, the expression

is approximately the gradient descent method. When k is small, the

expression approximates the Newton method 2° Because the second
method is faster but tends to be less accurate when near an error min-

imum, the scalar k is adjusted like the adaptive learning rate. As long
as the error decreases, k is made larger. If the error increases, k is
made smaller. Further, residual monitoring and active perturbation

of the weight matrices are additional methods used by the algorithm
to ensure satisfactory convergence and to stimulate learning.

Network Optimization
Different network architectures will obviously produce different

levels of prediction accuracy. Procedures to find the optimum net-

work structure for specific problems have so far been primarily based

on trial and error. Ideally, the neural-network code should develop

its own intelligence and experience in deciding on the optimum ar-

chitecture rather than the user being tied to hours of tedious, manual

interrogation. In the present code, although the user can at any time

override the code's decisions, an expandable heuristic rule base is

incorporated that guides the algorithm in the optimal network se-
lection. The main function of these rules is to associate a certain

problem or a certain class of problems to certain optimal network

architecture or a range of optimal architectures. The main function

of the code's optimizer is to generate and train different network
architectures and, by comparing their relative performance for a

specific problem, conclude on a set of optimal architectures, it can

generate optimal network architectures for five-hole probes, seven-

hole probes, conical, hemispherical, and faceted tip geometries and

spherical omniprobes. For the probes calibrated here the typical op-

timal architecture consisted of one input layer, two hidden layers,

and one output layer; and the number of nodes per hidden layer

were typically eight and four for the first and second hidden layer,

respectively. The activation functions that worked the best were lin-

ear, sine, cosine, hyperbolic tangent, and sigmoid.

V. Calibration Hardware and Setup

Pressure data acquisition during probe calibration and use was

performed with a 32-transducer electronic pressure scanner (ESP)
from PSI, Inc., with a pressure range of +10 in H20. The ESP was

interfaced to a laboratory computer and was calibrated on-line. The

calibration was performed using the apparatus described in Kinser

and RediniotisJ _ A 16-bit A/D board from ComputerBoards was

used to perform data acquisition. A dual-axis stepper-motor assem-
bly, which is computer controlled, can vary the cone and roll angles
(0, 4_) in the ranges (0, 180 deg) and (-180, 180 deg), respectively.
The positioning resolution for the calibration assembly is 0.32 deg
in cone and 0.9 deg in roll. To be able to assess the accuracy of the
calibration technique, test data were also collected, which involved

positioning of the probe at several known orientations, (ott_,, ,/3_,)

or (0,_,, 4',¢_,), none of them coincident with any of the orientations

used for calibration. (ot¢,i, /_) or (0_,1, q_._a), and collection of the

pressures. These pressures were fed into the calibration routines,

and a predicted pair (otp,_,, rip,ca) or (0p_d, q_Wcd)was calculated. The

difference between the two pairs (_,¢_t, _te_.t) and (%,_d, /_p_d) or

(0_¢_t,4,,_,) and (0o,_d, 4_p_J) is a measure of the calibration accuracy,
although some bias errors are not included (for example, because of

tunnel flow angularity, as seen later in Sec. VI).
Calibration and data acquisition were performed in the Texas

A&M 3 × 4 ft Aerospace Engineering Wind Tunnel. This is a closed

circuit tunnel with a test section equipped with a breather so that
the static freestream pressure is equal to the control room pressure.

The clear Plexiglas ® test section is4 ft (1.22 m) wide, 3 ft (0.91 m)

tall, and 6 ft (1.83 m) long. The contraction ratio is 9:1. The maxi-

mum speed achieved in the tunnel is about 150 ft/s (45.7 m/s) with

freestream turbulence less than 0.16%. To avoid temperature fluc-

tuations over time, there is an active cooling system to keep the

freestream temperature at 60°F (15.6_C) during testing.

VI. Discussion of Results and Error Analysis

One of the salient features of the calibration algorithm developed

is the range of available control over the network architecture. Typ-

ical commercial codes allow for an input layer; a few hidden layers

(limited number), each one with a specific activation function for

the entire layer; and an output layer with its activation function. The

code developed here allows the user to specify different activation

functions at each node. The activation functions f l-f9 in Fig. 5
can be selected from a database of functions or can be user-defined.

These functions include constant, linear, quadratic, cubic, logsig,

tansig, _7 cosine, sine, and exponential functions. These functions
can be customized and the user can define new activation functions.

To assess the effect of using multiple activation function within a

layer, two types of network architectures were trained on data from

analytical polynomials and actual probe calibration data. The first

architecture had one type of activation function per layer, whereas

the second employed multiple functions within a layer. Both network

architectures were optimized through the algorithm's optimizer. In

the first network architecture the network with the best performance

was found to have the following structure: four layers, three of which

are hidden, each with a single activation function, linear, quadratic,

and cubic, respectively. The optimal network of the second type

was a simpler two-layer network. Its single hidden layer used three

different node types: linear, quadratic, and cubic. Both architectures

have the ability to model a cubic polynomial selected for this test.

However, the multifunction network requires only 2 layers, 4 nodes,

and 10 weights to achieve better results than the 4-layer, 10-node,

34-weight single-function/layer network. The convergence rate for

the multifunction network is markedly better as Fig. 7 illustrates.

Of the two architectures, multifunction layer networks have been

consistently found to have higher convergence rates and converge
to lower error levels.

Once the network has been trained to a satisfactory level of con-

vergence, an output binary file is then created, which contains all of

the trained network information. This binary file is used by the feed-

forward procedure for reducing any new pressure data acquired with

the calibrated probe to the velocity components and the orientation
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1000

angles. This feedforward mode is exceptionally fast as compared to

similar accuracy local least-squares interpolation techniques _ and

is not dependent on the size of the calibration data file. Typically, the
neural-network code can reduce a test data file that contains 100 test

points in just about 5 s. whereas the same test file may take about

a minute to be processed by the local least-squares interpolation

technique. As mentioned in the Introduction, this increased data
reduction rate of the neural-network algorithm makes it suitable

for applications like air-data systems, where several readings per

second are required.

A miniature conical seven-hole probe, 0.063 in. (1.6 mm) in diam-

eter was calibrated at a freesteam velocity of 70 ft/s (21.3 m/s). The

high-angle sectors were split up as already described to enhance the

performance of the networks. Figures 8a-8d show the predictions

for the flow angles both in low-angle and high-angle sectors. Typical

calibration performance results are shown in Fig. 9 in the form of

error histograms. The error is represented along the horizontal axis,

while the vertical axis (labeled frequency) represents the number

of points in a specific error bin. The error band of a specific bin

is indicated by the width of the corresponding vertical bar. From

these histograms the following error statistics can be calculated:

pitch-angle--average absolute error = 0.22 deg, standard deviation

of error = 0.26 deg; yaw-angle--average absolute error = 0.28 deg,

standard deviation of error = 0.34 deg; cone-angle--average ab-

solute error = 0.15 deg, standard deviation of error = 0.18 deg;

roll-angle--average absolute error = 0.17 deg, standard deviation

of error -- 0.21 deg; and velocity magnitude--average absolute er-
ror = 0.35%, standard deviation of error = 0.52%. The higher error

levels in the pitch- and yaw-angle prediction (low-angle sector), as

compared to the error levels in the cone- and roll-angle prediction

(high-angle sectors), are due to the fact that each of the high-angle

sectors was further split up to several subsectors, and each subsector

was calibrated individually, while no such subdivision was applied

to the low-angle sector.

The uncertainty analysis presented next is based on the tech-

niques discussed in Ref. 22, and the application of the techniques
to the multihole probe problem follows the procedures discussed in

Ref. 23. First, the uncertainty of the pressure measurement hardware

is estimated. The pressure scanner used was calibrated during cali-

bration of the probe, on-line, every hour. A 5-point calibration was

performed, which accounted for transducer nonlinearities. The ref-

erence manometer used for calibration had an uncertainty of 0.005

torr for the range of pressures used here (+6 torr). The preceding

combination, along with a one-count AJD conversion uncertainty of

the 16-bit A/D board, yielded a pressure measurement worst-case

error of 0.015 tort or 0.009 in H20. Errors in angular positioning

were negligible. The resolution of the cone- and roll-positioning

stepper motors (0.32 and 0.9 deg) should not be confused with their

positioning precision, which is on the order of arc seconds. Slipping

of the stepper motors could of course compromise the accuracy, es-

pecially because no angular positioning encoders were employed.

However, strong evidence (although not absolute proof) that no slip-

ping occurred was the fact that at the end of a calibration session

the stepper motors returned the probe, as instructed, to the exact

orientation that it started from at the beginning of the session, if any

slipping had occurred, it should have happened in a fashion such that

all slipping occurrences canceled themselves out, which is a very

unlikely event. Bias errors because of probe sting deflection were

also negligible at the speeds of calibration and for the specific struc-

tural design of the sting. Uncertainty in the tunnel flow angularity

will cause a bias error if the probe is tested or used in a different

facility. However, for the calibration test processes followed in this

work, as described in Sec. V, flow angularity does not have an effect

for the following reason. Both calibration and test data were taken

in the same facility and freestream velocity, and the calibration ap-

paratus was designed such that it maintained the probe tip always

at the same location, regardless of probe orientation.

The uncertainty in the evaluation of the pressure coefficients

BI,, By, B,, Br, A,, A, was calculated using their definition for-
mulas (1)-(4) and constant-odds combination 22 given by

(11)

where Cp is any of the pressure coefficients and Spi is the uncertainty

in the measurement of pressure p_. Subsequently, and to see how

the uncertainty in the calculation of the pressure coefficients propa-

gates through the neural-network technique, a jitter approach 22 was

followed. The estimates of the 8p_ were obtained from a Gaussian
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distribution with zero mean and a standard deviation of 0.005 torr.

This was chosen so that the worst-case error in pressure measure-

ment, i.e., 0.015 torr, corresponds to three standard deviations from

the mean, which in turn corresponds to a 99.5% probability that the

pressure measurement error is smaller or equal to 0.015 torr. The

preceding allowed the estimation of uncertainty in B t, (or B,), B._,(or

Br), A,, and A, for every calibration and test point through Eq. (11 ).

The obtained ,SB t, (or 8B,), 8B._. (or _B,.), 8A,, and _A_ were used

to perturb the original values of these coefficients for the calibration

points, and the perturbed values were subsequently used as the in-

puts to train the neural networks. Once the networks were trained,

they were used to reduce the test data that were also perturbed in the

manner just explained. The predictions obtained in this process were

compared to those obtained from the unperturbed networks and test

points, and the standard deviation of the differences between these

two yielded estimates for the overall uncertainty. The results are

listed here: standard deviation in cone-angle errors, 0.24 deg; stan-

dard deviation in roll-angle errors, 0.37 deg; and standard deviation

in velocity magnitude error, 0.72%.

Figure 10 shows the histograms of these errors. The statistical

properties of these histograms are very similar to the ones obtained

from the actual calibration tests (Fig. 9). As already seen, the error

levels obtained from the actual test are within those predicted from

the uncertainty analysis. The uncertainty analysis presented here

applies strictly to steady-state flows. The issues of probe calibra-

tion and measurement accuracy in unsteady flow environments are
addressed elsewhere), z4

VII. Conclusion

Miniature multihole probes were successfully designed and fab-
ricated with high tip-surface quality. Five- and seven-hole miniature
probes were fabricated with hemispherical, conical, and faceted tip

geometries and tip diameters as low as 0.035 in. A neural-network-

based probe calibration algorithm was developed. The algorithm's
features include flexibility in network architecture design and net-

work self-optimization capabilities. The introduction of multiple

activation function architectures had a significantly positive impact

on the network training convergence rates and levels. In the feedfor-

ward mode the algorithm yields computational speeds an order of

magnitude higher than those typically achieved by similar accuracy

interpolation algorithms. Moreover, the small size of the feedfor-
ward code facilitates its formulation into a subroutine and enhances

its ease of interfacing with other software. A miniature seven-hole

probe was calibrated and tested in the wind tunnel. The new al-
gorithm combined with precision probe calibration hardware and

procedures yielded prediction accuracies of 0.28 deg in the angle

prediction and 0.35% in the velocity magnitude prediction. Finally,

an error analysis was performed on the calibration procedures and

algorithm and yielded uncertainty levels compatible with those pro-

duced by the actual probe test.
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1. Introduction

HIS Note deals with the implementation of a simple tech-
nique to correct for the pressure measurement error produced

in miniature multihole pressure probes caused by the lag in the re-

sponse of the probe tubing system. As the size of the pressure probe

is reduced in order to reduce flow disturbance, the probe's frequency

response deteriorates. Reduced frequency response generally causes

the wait times in flow-mapping experiments to increase. The wait

time is the time that the probe, after it moves to a new measurement

location in the flowfield, has to walt before data acquisition can be

performed, in order for the pressures at the probe pressure transduc-

ers to reach steady state. Moreover, deterioration of probe frequency

response limits its capability to resolve temporal information in un-

steady flows. In the present work, we introduce a simple algorithm

that significantly improves a probe's frequency response. Detailed

work in the area was carded out by Whitmore. _ He developed a

mathematical model for a tubing system, derived from the Navier-

Stokes and continuity equations. On the basis of this model, he then

developed an algorithm to compensate for pneumatic distortion. The

technique presented here is simpler and much less computationally

intensive and is thus amenable to real-time implementation. The

technique presented here is applicable only to critically damped or

overdamped tubing systems, as discussed later.

Generally, in pressure-measuring systems such as multihole

probes, the pressure at the pressure-measuring instrument (pres-

sure transducer) can be different from the pressure at the source

(i.e., the probe tip) because of the time lag and pressure attenuation

in the transmission of pressures in the associated tubing. When the

pressure at the pressure source is changing rapidly, the pressure at

the transducer lags behind that at the source and its amplitude is

attenuated because of I) the time needed for the pressure change to
propagate along the tubing (acoustic lag) and 2) the pressure drop

associated with the flow though the tubing (pressure lag))

The speed of the pressure propagation along the tubing is the

speed of sound. The magnitude of the acoustic lag r thus depends on

only the speed of sound a and the length of the tubing L, as expressed
in r = L/a. Because the speed of sound at standard atmospheric

conditions is on the order of 1100 ft/s (340 m/s), errors caused by

acoustic lag are of concern only in pressure systems having very long

pressure tubing. Errors associated with acoustic lag can be neglected
here because the tubing lengths of interest are very short [order of

I ft (0.3 m)]. Moreover, because of the motion of the air through the
pressure tubing between the pressure source and the transducer, the
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pressure at the transducer is different from the pressure at the source

by a pressure drop Ap. The modeling 1-3 of both of these factors

and the simplification of the model are briefly discussed next.

II. Modeling of Pressure-Tubing Response

Let us consider a section of pressure tubing of length L and in-

side diameter d. Let one end of the tubing be connected to a high-

frequency-response pressure transducer (transducer T2) and a tran-

sient pressure signal p(t) from the pressure source be applied to the

other end (Fig. I). Let the pressure measured by transducer T2 be

p'(t). The pressure signal p(t) from the pressure source is measured

directly by a second pressure transducer TI (Fig. 1). The tubing as-

sembly can be modeled as a second-order dynamic system2:

p(t) = mcd2P'(d; ? r) + RcdP'(tdt+ r)-- + p'(t + r) (1)

In the preceding expression, m is the equivalent mass of the sys-

tem. This is the combined mass of the air inside the tubing and the

transducer cavity. 1/C is the system elastic constant, R is the viscous

damping coefficient, and r is the acoustic lag. If we assume lami-

nar flow in the tubing, then the value of _.= RC can be calculated

theoretically from the following equationS:

128#L V

_d4po

where L and d are the length and internal diameter of the tubing.

V is the combined volume in the tubing and the transducer cavity,

Po is a reference pressure in the tubing-transducer system, and/a

is the coefficient of viscosity of the fluid medium in the tubing (air

in our case). This equation assumes laminar flow in the tubing and

applies only to straight tubing of constant diameter. The preceding

expression for k does not hold for a more complex tubing assem-

bly, consisting of tubing sections of different lengths and diameters

and/or incorporating bends.

For complicated tubing assemblies, such as those in a probe, theo-

retical calculation of k is not practical. As shown later, experimental

calculation of _l can yield good results. For small tubing and trans-

ducer cavity volumes, one can see that

mC << RC, r << RC (2)

Combining Eqs. (!) and (2), we get

) dp',t)t + p'(t) = p(t) (3)
dt

The preceding equation, because it is first order, holds for any

critically damped or overdamped (and not underdamped) tubing

assembly regardless of its complex design. The lag constant _. is

of course different for different tubing assemblies. If the system

lag constant ). is known, the actual pressure signal p(t) applied to

Transducer TI Transducer T2

/ ,//Junction A _x

[----A_ pp G
Pressure Souree

Fig. 1 Schematic of the tubing-transducer assembly.



898 .', L,_,A JOURNAL VOL. 37. NO. 7: TECHNICAL NOTE

one end of the pressure tubing can be calculated from the measured

signal p' (t), using Eq. (3), even before steady state has been reached.

IIL Experimental Calculation of the Lag Constant

The lag constant _. can be experimentally determined in several

ways, based on the solution of Eq. (3) for different initial conditions.

The method used in the experiments conducted here is described

next. Equation (3) provides the basis for determining ,k:

p(t) - if(t)
_. = (4)

dp'(t)/dt

This technique can be used to significantly accelerate the map-

ping of a flowfield, through on-the-fly data acquisition. The actual

pressure p(t) can be measured as the probe sweeps through the area

of interest. In other words, the probe need not stop at a point and wait

for pressure p' (t) to reach steady state. Through this technique, one

can also measure the actual pressure p(t) in a unsteady flowfield

since one can calculate p(t) from p'(t) if the lag constant L of the

particular tubing assembly in use is known. However, the bandwidth

that can be resolved through the technique is limited. Following the

work of Whitmore and Moes, 4 one can see that a rigorous criterion

that must be satisfied for the first-order model [Eq. (3)] to be valid

is given (for moderate or short tubing lengths) by

co (( 32#/d2po (5)

where to is the radian frequency of the flow unsteadiness and Po

is the density. Let us consider an example involving the miniature

multihole probes for which the algorithm was developed. The size

of these probes is small for minimum intrusiveness, especially in

intrusion-sensitive flows. In these probes, tubing i.d. of 0.25 mm are

typical. For such diameters and typical density and viscosity values,

we get, from Eq. (5), to << 7500 rad/s. So, if we take to to be one order

of magnitude smaller than 7500 rad/s, this translates to a frequency

of 120 Hz. This is sufficient for many unsteady-flow-measurement

applications and can yield very small wait times in flow surveys.

IV. Experimental Setup

Figure 1 shows the schematic of the experimental setup used.

A pressure pulse generator (PPG) is used to apply the transient

pressure signal p(t) to one end of the pressure tubing. This pressure

is measured directly by pressure transducer TI, and the other end

of the pressure tubing is connected to the pressure transducer T2.

The pressure source (PPG) represents a flowfield. The pressure

sensed by transducer TI simulates the pressure at the tip of the

probe, and that measured by transducer T2 simulates the pressure

measured by the pressure transducer the probe is connected to, Any

tubing assembly of interest can be inserted between junction A and

transducer T2, and its equivalent lag constant X can be determined.

The operation principle of the PPG is described in Ref. 5.

Data acquisition was performed by a DAS- 16 Jr A/D board (Com-

puter Boards). The outputs from transducers T1 and T2 (Validyne)

were fed into two channels of the board, and data acquisition was

performed sequentially and not simultaneously. To minimize the

error caused by this, the data were acquired at a sampling rate of

40,000 samples/s. Only the samples taken at every millisecond (for

example, samples 1 and 2, then samples 41 and 42, then 81 and 82,

and so forth) were retained and used for further analysis. The pres-

sure transducers were regularly calibrated. A five-point calibration

was performed, which accounted for transducer nonlinearities and
thermal drifts. The reference manometer used for calibration had an

uncertainty of 0.005 torr for the range of pressures used here (4-6

tot'r). The preceding calibration, along with a one-count A/D con-

version uncertainty, yielded a pressure measurement uncertainty of

0.010 torr. To render the pressure applied at junction A, a smoother
function of time, a damper tube was introduced between the PPG

outlet and junction A (Fig. I). Moreover, to reduce the noise in the

calculation of the pressure time derivative, a digital filter (running

average) was first applied to the acquired data. The lag constant k

for the tubing system was then determined from Eq. (4).

V. Results

Typical pressure signals p(t) and p'(t) are shown in Fig. 2 for a

single actuation of the PPG. These data correspond to a simple tubing

assembly, consisting of a single straight tube 18.5 in. (0.47 m) long

with constant inside diameter of 0.010 in. (0.25 ram). Equation (4)
was used to calculate a _. value of 0.862. As stated earlier, there is

a time lag between p'(t) and p(t). In other words, the pressure at

transducer T2 takes some time At to reach the 99% of the steady-

state pressure value, For the particular tubing used, the time lag
was At = 3.877 s, which would be a significant wait time in flow-

mapping experiments.
Once the value of _. is calculated, we can calculate the corrected

pressure Pco,_(t) from the measured pressure p'(t) from the equation

Peon(t) = p'(t) + ).dp'(t) (6)
dt

This should be equal to the applied pressure p(t). Figure 2 shows

good agreement between Peon(t) and p(t). The average error was
0.007 torr. Subsequently, and for validation purposes, an arbitrary

pressure signal p (t) was generated by repeated random actuations of

the PPG. The two pressure signals p(t) and p'(t) were measured and
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Fig. 2 Response of transducers T1 and T2 for a tubing of length 18.5 in.
(0.47 m) and inner diameter of 0.010 in. (0.25 mm) for a single PIN:;
actuation and corrected pressure Pcorr(t).
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Fig. 3 Response of transducers TI and T2 forthe tubing corresponding
to Fig. 2 for a series of random PPG actuations and corrected pressure
P_o_(t).
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are shown in Fig. 3. From the already calculated value of X (=0.862)

and pressure signal p'(t) measured by transducer T2, the corrected

pressure P_o,_was calculated and should reconstruct p(t). As seen

in Fig. 3, the agreement is excellent. For application of the tech-

nique to actual real-time flow measurements, the reader is referred to
Ref. 5.

Vl. Conclusion

A simple technique was developed for pressure measurements
in unsteady flows and on-the-fly data acquisition in steady flows

using conventional pressure-sensing methods. This technique pro-
vides a means of compensating for the errors caused by pressure
lag and attenuation in the pressure tubing, is computationally very
inexpensive, and is implemented in real time. It is, however, limited
to critically damped or overdamped tubing systems. The agreement
of predicted and actual pressures validates the simple mathematical
model for the tubing and the algorithm used to predict the actual ap-
plied pressure. This technique will help to bridge the gap until new

pressure-sensing techniques are developed based on the incorpo-

ration of microelectromechanical systems pressure transducers on

or near the surface of the probe tip. This development is currently

undertaken by our group.
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ABSTRACT

This work presents the development of a data reduction algorithm for non-nulling,

miniature, multi-hole pressure probes in compressible, subsonic flowfields. The algorithm is able to

reduce data from any 5- or 7-hole probe and generate very accurate predictions of the velocity

magnitude and direction, total and static pressures, Mach and Reynolds number. The algorithm

utilizes a database of calibration data and a local least-squares interpolation technique. It has been

tested on 4 novel miniature 7-hole probes that were fabricated at the Aerospace Engineering

Department of Texas A&M University and calibrated at the NASA Langley Flow Modeling and

Control Branch for the entire subsonic regime. Each of the probes was miniature in size with a tip

diameter of 0.065". Extensive uncertainty analysis of the calibration procedures and the data

reduction algorithm was performed. Excellent prediction capabilities are demonstrated with

prediction uncertainties less than 0.2 degrees in angle prediction and less than 0.35% in velocity

magnitude prediction.
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= Polynomial constants calculated by least-squares method

= Non-dimensional total and static pressure coefficients

= Non-dimensional pitch or cone pressure coefficient

= Non-dimensional yaw or roll pressure coefficient

= Euclidean distance from calibration point to test point

= Mach number

= Directional unit vector

= Number of calibration points used by local least-squares interpolation

= Pressure

= Pseudo-dynamic pressure

= Universal gas constant

= Reynolds number

= Temperature

= Velocity magnitude

= Cartesian velocity components

= Velocity vector

= Interpolation weight

-- Pitch angle

= Yaw angle

= Roll angle

= Cone angle

= Offset angle for port orientation

= Density

= Viscosity
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= Calibration
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= Static

= Total

= Test
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Abbreviations

LLS --

PIV =
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Local Least-Squares
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Laser Doppler Velocimetry
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= Full ScaleOutput
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INTRODUCTION

Themulti-hole pressureprobe is a cost effective,robustand accurateinstrumentfor three-

dimensionalvelocity and pressuremeasurementsin a wide rangeof flowfields. For steady-state

measurements,5- and7-holeprobesarecapableof resolvingflow angularitiesup to approximately

75 degreesandpredict the flow conditions with high accuracy.Although powerful, measurement

techniquessuchasLaserDopplerVelocimetry (LDV) andParticleImageVelocimetry (PIV) havea

numberof disadvantagescomparedto multi-hole probes.LDV and PIV requirethe useof costly

components,suchasexpensivelasersandopticalequipment.Bothmethodsarecomplexandrequire

painstakingalignmentof lasersandoptical equipmentto obtainaccurateflow measurements,andit

is oftenhardto getgoodresultsoutsidethe laboratoryenvironment.

A calibratedprobe canbe inserted into an unknown flowfield and accuratelypredict the

velocity vector by recordingthe port pressuresandcomparingthemwith the calibration database

through a set of non-dimensionalcoefficients. Historically, a number of different calibration

techniqueshavebeenutilized for multi-hole probes,all with their own advantagesand difficulties.

A commonly used method for hemispherical probe tips has been to apply the potential flow

equationsfor a sphereto relatethe flow anglesandvelocity magnitudeto thepressuredifferentials

measuredon theprobetip. KjelgaardI usedthis techniqueon a hemisphericaltipped 5-holeprobe.

This approachis sensitiveto constructiondefectsof the probetip. Multi-hole probesaregenerally

desiredto be small in size suchthat the flow disturbancecausedby the probe canbe kept to a

minimum. When minimizing the probe tip dimensions,construction imperfections become

increasinglyinevitableand the relative impact of the imperfectionson the proberesponseis also





increasing. Pressure distributions based on a theoretical model are inaccurate becauseof

discrepanciesbetween the theoreticalprobegeometryand the physicalprobe. To compensatefor

themanufacturingdefects,eachprobehasto be calibratedindividually using extensivecalibration

routines.To accountfor compressibilityandviscouseffects,probesarealsooften calibratedovera

rangeof MachandReynoldsnumbers.

Onemethodof calibratingmulti-holeprobesis to inserttheprobeinto aflowfield of known

magnitudeanddirection.The probeis thenpitchedandyawedthrougha rangeof known angles,to

simulate every possible measurablevelocity inclination. For each such probe orientation, the

pressuresfrom all the pressureports are recordedand storedin a database.Angle incrementsare

typically 0.5 to 5 degreesyielding a databasewith several thousanddata points, each with a

pressuresignaturethat is uniquefor thatangleinclinationandvelocity magnitude.Unlesstheprobe

is physically damagedit will keepits characteristicsand only one calibration is required for the

lifetime of theprobe.

Severalmethodsof comparingthemeasuredpressuresfrom anunknown test casewith the

calibrationdatabasehavebeendeveloped.Bryer andPankhurst2appliedrelationshipsderivedfrom

a set of pressurecoefficients over the different flow regionsof the probe. On a 5-holeprobethe

measurementdomain of the probe was divided into one low-angle regime and four high-angle

regimes correspondingto the center port and each of the peripheral ports, respectively.The

calibrationdatawasusedto deriveempiricalrelationshipsexpressingthe angleinclinationsandthe

magnitudeof the velocity vector in termsof the measuredpressurecoefficients.Rediniotis et al.3

derivedpolynomial fits for calibrationdatafor conical7-holeprobes.Further theydivided theport

specificregionsinto severalsectionsthusincreasingthenumberof regionsfor which polynomials

were usedto describethe flow variables.They created8 regionsdescribingthe low angle flow





(wherethe centerport sensesthehighestpressure)and 12high angleregions(whereany of the 6

peripheral ports senses the highest pressure). The method of subdividing the regions increased the

goodness of the polynomial fit through the calibration points, but did not necessarily ensure well-

behaved calibration surfaces between data points.

The polynomial fit techniques mentioned are global in nature, that is they generate

polynomial fits for relatively large sectors or regions. Though Rediniotis et al. 3 reduced the region

size by subdividing the sectors, the individual regions were still large and could, depending on the

density of the calibration data, contain hundreds of data points. Using polynomial fits for large

regions can cause the overall prediction accuracy to decline because of the large number of

calibration points the fit tries to model. Utilizing a local interpolation scheme instead of a region-

wide polynomial fit has also been used with multi-hole probe calibration methods. Zilliac 4

calibrated conical tipped 7-hole probes for use in flowfields with high angularity. For each of the

calibration points, the seven port pressures, the total pressure and the known pitch and yaw angles

were recorded in a database. Sets of non-dimensional pressure coefficients were also stored in the

calibration database. For a calibrated probe in an unknown flowfield the seven port pressures were

recorded and the non-dimensional coefficients calculated. By searching the calibration database for

similar coefficient values the approximate flow conditions were identified. Adjacent coefficient

values were interpolated to solve for intermediate angles and pressure coefficient values. The

accuracy of this technique is dependent on the density of the calibration data. In the present work,

the data-reduction algorithm has similarities to that of Zilliac's; however new features have been

introduced that have allowed us to push the prediction uncertainties to very low levels, as it will be

seen in the uncertainty analysis discussion.





Fourminiature7-holeprobesweredesignedandbuilt. Theywere subsequentlycalibratedat

the NASA Langley Flow Modeling and Control Branch.The work presentedhereindescribesthe

calibration anddata reductionprocedures,Mach and Reynoldsnumbereffects on the calibration

andadetaileduncertaintyanalysis.

FACILITY AND PROBE DESCRIPTION AND EXPERIMENTAL PROCEDURES

The four miniature 7-hole probes were identical and their design is illustrated in

figure 1. It is worth-noticing that the probe tip diameter was only 0.65". The back of the probe was

formed into a bullet-shape afterbody to minimize unsteady vortex-shedding effects. Each one of the

ports on the probe tip communicates, through internal tubing and a 90-degree elbow, with one of the

stainless steel connecting tubes (figure 1). All probes were calibrated at the NASA LaRC Probe

Calibration Tunnel (PCT). This facility is a variable density pressure tunnel that can independently

control Mach number, Reynolds number, and total temperature. The PCT configuration for 7-hole

probe calibration is shown in figure 2. This open return tunnel is supplied from a 5000 psi bottle

field and exhausts into either a baffled atmospheric trench or vacuum sphere. The air is preheated

with a steam heater to compensate for the gross Joule Thompson temperature effects. A secondary

electric heating system is used to set the final tunnel total temperature. The interaction of the

temperature and pressure systems is dependent on the mass flow through the system. The tunnel

operator selects the mode of operation to maintain Mach number variations less than 1% of set

value, tunnel pressure variations less than 0.1 psi, and tunnel temperature variations less than 1°F. If

at any time the tunnel conditions deviate more than these tolerances, the probe data acquisition

process is paused, then resumed when the conditions are reestablished. The test envelope for the

calibration is shown in figure 3. The four probes were calibrated at Much numbers ranging from 0.1





to 0.8, in increments of 0.1, and at free-stream total pressure of 17, 32 and 60 psi which yield a

Reynolds number (per unit length) range from 2.5.106m 1 to 52.106m -l. In figure 3, each of the

curves represents a different wind tunnel total pressure during the calibration.

Each probe was calibrated by inserting it into a flowfield of known properties. The probe

was mounted on a traversing system capable of pitching and yawing the probe, as shown in figure 2.

While the flow magnitude and direction stays constant the probe is pitched and yawed through a set

of known angles relative to the flow direction, keeping the location of the probe tip fixed on the axis

of the tunnel nozzle from which the calibration jet flow emanates. For each of these sets of angles

all of the port pressures from the probe were recorded. The traversing system consisted of two

stepper motors that could vary the probe pitch and yaw angles within the range -60 degrees to +60

degrees, in 2 degree increments. Each stepper motor was equipped with an optical encoder that

provided probe positioning feedback with an accuracy of 0.01 degrees. The pressures were

measured using four different ESP pressure scanner units from PSI Inc. Depending on the pressure

range experienced at a specific calibration, the ESP unit with the proper pressure range was used.

This "staging" of the ESP units allowed us to achieve significantly higher pressure measurement

accuracy than if one single ESP unit with a large pressure range were used. The specific ESP ranges

and the achieved accuracies are discussed in the uncertainty analysis section.

LOCAL LEAST-SQUARES DATA REDUCTION ALGORITHM

Two different sets of angles are used to describe low-angle and high-angle flow (Gerner and

MaurerS), pitch and yaw angles (cq [3) and cone and roll angles (0, q_), respectively. These two sets

of angles are shown in figure 4. The conversion from the pitch and yaw angles to the cone and roll

angles is given by:





0 : cos -l (cos a'cos p) (1)

(tan,  
00= tan-I , si-_) (2)

Each sector on the face of the probe (figure 5) is identified by the pressure port that senses

the highest pressure for all possible flow inclinations within that sector. The flow over a 7-hole

probe is divided into low-angle and high-angle flow regimes. Low-angle flow is identified when

pressure port 1, the central port, has the highest pressure. High-angle flow is identified when the

highest pressure occurs in one of the peripheral ports 2 through 7. In figure 5, )_ is the offset-angle

that defines the roll orientation of the pressure port pattern relative to a physical reference surface

on the probe, and is used by the data reduction algorithm. In this case, the reference surface is a flat

surface on the top side of the probe, immediately upstream of the bullet-shape afterbody.

The local velocity vector at any measurement location can be fully characterized by four

variables. For low-angle flow these variables are: pitch angle a, yaw angle [3, total pressure

coefficient At and static pressure coefficient As. For high-angle flow the variables are: cone angle 0,

roll angle q_, At and As. As mentioned above, knowledge of the local total temperature is also

required, which for this work has been considered constant and equal to the flee-stream

temperature. These four quantities need to be determined as functions of two non-dimensional

pressure coefficients formed from the 7 measured pressures: b,_, bl_ for low-angle flow and b0, b, for

high-angle flow (Rediniotis et al., 3 Everett et al.6).

used:

For a 7-hole probe, in the low-angle flow regime (sector 1) the following definitions are

1 (P7 + Ps - P4 - P6) (3a)
b,_ = ,f_ q





b_ - (P2 - P3) + (P6 - P5 + P7 - P4) (3b)
q 2.q

A, - (p' - p') (3c)
q

A s - q (3d)
(Pt - Ps)

The pseudo-dynamic pressure, q, is defined as:

q = p, _ (P2 + P3 + P4 + Ps + P6 + P7) (3e)
6

For a 7-hole probe, in the high-angle flow regime (sectors 2-7) the following definitions are used:

b 0 = (.'P_ - P') (4a)
q

_h, - (p+ - p-) (4b)
q

At = (p_ - p') (4c)
q

A s - q (4d)
(P, - Ps)

The pseudo-dynamic pressure, q, is defined as:

q=Pi
(p+ +p-)

2
(4e)

In the previous definitions, Pi is the highest measured pressure (at the ith port). Looking into the

probe tip, p+ and p- are the pressures measured by the peripheral holes adjacent to port i, in the

clockwise and counter-clockwise direction, respectively. The input coefficients b,_, b0 will be

referred to as bl and b13, b, will be referred to as b2 in the remainder of this text, since many of the





processesdescribedbelow useboth high- and low-angledefinitionsin the samemanner. In the

description of the local least-squares data reduction algorithm, the 7-hole definitions will be used;

however the same principles apply to the 5-hole probe definitions.

In a preprocessing procedure, the probe calibration files are used to create a new calibration

database that contains, for all velocity inclinations, all of the non-dimensional coefficients defined

in equations 3 and 4. A global scaling factor, Ab2/Abl, is introduced to bring the coefficient scales

on the same order of magnitude and thus improve 2D interpolation based on Euclidean distances in

the bl-b2 plane. This factor is defined using the maximum and minimum values of the coefficients

found in the calibration file, and is stored in the calibration database:

Ab2 _ (b2 c)_x - (b2c)m_. (5)
Abl (blc)max -- (blc)min

When the probe is inserted into an unknown flowfield, 7 port pressures are recorded and the

non-dimensional coefficients bl and b2 are calculated. That is b_ and b13 for low-angle flow and b0

and b,_ for high angle flow. The second step is to find the closest values of the independent

coefficients in the calibration file compared to the test values. The closest data points are found in

terms of Euclidean distance:

dj = V\ Abl (6)

Where the index j indicates a specific calibration point and dj is the Euclidean distance, in the bl-b2

plane, from the coefficients of the test point, (b 1r, b2T), to the scaled (using equation 5) coefficients

of the j calibration point, (blc, b2c)j.

It is necessary that the selected calibration points (blc, b2c) be distributed around the test

point (blT, b2T) to obtain a well-behaved polynomial surface and allow for interpolation rather than

extrapolation. A procedure checks if the closest calibration points, in triplets, form triangles
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enclosingthe testpoint in thebl-b2 plane.The original ranking of the closest points based on the

Euclidean distance, dj, can be altered to ensure that (if at all possible) the combination of the closest

calibration points forms triangles around the test point. The algorithm will search for a minimum of

two such triangles. In figure 6, the star indicates the test point (blT, b2v) and the circles at the

comers of the triangles indicate the closest selected calibration points (b 1c, b2c) that have also been

checked for the triangulation requirement. Whether a test point (point P in figure 7) is enclosed by

a certain triangle formed by three calibration points (points A, B and C in figure 7) is checked by

first calculating the unit vectors h I , h 2 and h__,

fil = APx A_C

fiz = CPx CB

=

(7a)

(7b)

(7c)

If all 3 vectors have the same direction the test point P is within the triangle, otherwise P is outside

the triangle.

In some cases, like the one illustrated by figure 8, a test point might be lying close to the

boundary between sectors (sectors 3 and 5 in figure 8). In figure 8, the diamond indicates the test

point, the circles indicate the calibration points, and the boundaries between adjacent sectors are

indicated by the thick solid lines. Since the algorithm searches for the closest calibration points that

also satisfy the triangulation requirement around the test point, in this case it will have to choose

calibration points from both sectors (3 and 5). A procedure was introduced to allow the algorithm to

do that. As described above, this selection is based on the values of coefficients bl and b2.

However, the coefficient definitions for bl and b2 are sector-sensitive. In order to make the

coefficients (blc, b2c) of calibration points from different sectors comparable, the adjacent sectors
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use the coefficient definitions for bl, b2 of the primary sector(sectorthat sensesthe maximum

pressure).A decisionasto whetheratestpoint is closeenoughto theboundarybetweentwo sectors

(andthereforethealgorithmwouldhaveto considercalibrationpointsfromboth sectors)is madeby

the algorithmbasedon whetherornot thetestpoint in within the"overlap" regionbetweenthe two

sectors.This "overlap" regionis definedasthelocusof all pointsfor whichthe pressuresof the two

ports correspondingto the two sectorsdiffer by less than a user-specifiedpercentageof the

maximum port pressure.Let us consideran examplebasedon figure 8. Port 3 has the maximum

pressure,for example10.0Torr, andtheuserhasdefinedan"overlap" percentageof 25 %. Then, if

port 5 sensesa pressureof 8.0 (which differs from the maximumpressurelessthan 25 % of the

maximum pressure),the algorithmdecidesthat the test point lies closeto the boundary between

sectors3 and 5, andwill in this caseconsidercalibrationpointsfrom both sectors,3 and 5, for the

local interpolation.

Calibrationpointsfar from thetestedpoint (in thebl-b2 plane)areassumedto havelittle or

no influenceon thecalculation.Therefore,a local interpolationschemeis usedandonly calibration

points closeto thetestpoint areusedin theevaluation.A least-squaressurfacefit techniqueis used

to calculatethetwo flow anglesandthetwo pressurecoefficientsasfunctionsof the input variables,

bl and b2. The selectedclosestand triangulation-checkedcalibrationpoints (minimum number

determinedby the order of the polynomial interpolationsurface)areusedto calculate4 separate

interpolationsurfaces.Eachsurfaceis representedasapolynomialwith coefficientscalculatedby a

least-squaresapproximationmethod.For a planar surfacethe following polynomial is used to

describethesurface:

f(bl,b2) = ao+aI .bl+a 2-b2 (8)
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Wheref canbeanyof thevariablesa, 13,0, d_,At, As and a0, a,, a2 are the least-squares polynomial

coefficients. By entering the measured input coefficients (biT, b2-r) into the calculated function

f(b 1,b2), interpolated values for otr, 13"r,0 T, dpr, (A t)r and (A s)r are obtained. The angle or pressure

coefficient surfaces for the probe are assumed to be smooth locally and not exhibit any large

gradients or discontinuities. The local least-squares method generates a surface that does not

directly go through all the selected calibration data points, but is rather an average surface. A

standard polynomial surface fit can exhibit large fluctuations because the surface is required to go

through all the data points. The least-squares surface will moderate the effect of a badly selected or

measured point and create the best overall surface fit.

The total and static pressures are calculated from the non-dimensional pressure coefficients

(At)v, (As)T:

P, = Pi - (A,)1- "qr (9a)

Ps = Pt qr (9b)
(As)v

In equations 9a and 9b the pressure Pi isthe port with maximum pressure and qv is the pseudo-

dynamic pressure forthe testpoint (from equation3e or 4e).The velocitymagnitude and the flow

conditions are calculated using adiabatic, perfect gas relationships for air 7. The Mach number is

calculated from:

Ma = 4(5" (e (-z/7'"cpJp')) - 1)) (10)

Temperature, compressible dynamic pressure and density are given by:

T - Tt (11)
(l + M"/5)

qco,,p, = 0.7. p, .Ma z (12)
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p_ Ps (13)
R.T

Where R is the universal gas constant (287 J/kg.K).

The velocity magnitude is calculated by:

2. qcompr
U = (14)

P

The Cartesian velocity components for low-angle flow are then given by:

u = U.cosa.cosfl (15a)

v = U-cos ct- sinl3 (15b)

w = U. sinct (15c)

while the Cartesian velocity components for high-angle flow are given by:

u = U.cos0 (16a)

v = U. sin 0. cos ¢_ (16b)

w = U. sin 0. sin _ (16c)

The air viscosity I-t is derived from Sutherland's law, and the Reynolds number per unit length is:

Re U.p
- (17)

1 /z

The data reduction procedure described above is repeated for each separate test data point.

COMPRESSIBILITY AND VISCOSITY EFFECTS

As previously mentioned the probes were calibrated for a wide range of Mach and Reynolds

numbers. In this section, we present the results on the calibration dependence on Mach and

Reynolds numbers and discuss the algorithms capability to take these effects into account. Previous

work has shown that the non-dimensional coefficients b 1 and b2 have a slight dependence on Mach
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andReynoldsnumber(KrauseandDudzinski,8Ainsworth et al.,9Dominy andHodsonl°).The non-

dimensionalcoefficientsdependenceon Mach and Reynoldsnumber,derived from our calibration

data,areshownin figures9 to 12.The obse_'edrangesof valuesfor the pressurecoefficients bl

andb2are0 to 1.7and-2 to 2, respectively,and therangesfor thepressurecoefficientsAt andAs,

are-0.8 to 0 and0 to 1.4respectively.Thedata in figures9 to 12referto calibrationpointswith the

sameflow angles,i.e. cone angleof 25 degreesand roll angleof 84 degrees.However similar

behavioris exhibitedat anyanglewithin the measurableregime.As seenin figures 10and 12 the

calibrationdependenceonReynoldsnumber is very small, andthe dependenceon Machnumber is

fairly small,howevernotnegligible if accuratemeasurementsareexpected.It shouldbepointedout

herethatthe apparentlynon-negligibledependenceof thecalibrationon Reynoldsnumber(figures

10 and 12) at Ma=0.1, is most likely an artifact of the rather poor accuracyin the pressure

measurementsat that specific,low Mach number,as it will be furtherdiscussedin the uncertainty

analysissection.From figures9 and 10, it can also be seenthat the dependenceof bl on Ma is

strongerthanthatof thedependenceof b2 onMa. Also, thedependenceof At andAs onMa andRe

(figures 11and 12)is strongerthatthe dependenceof bl andb2 onMa andRe (figures9 and 10).

This meansthat if no Ma and Reeffectsare taken into accountin the datareductionprocess,the

predictionof thevelocity magnitudeis likely to suffermost.

Below wediscusshowthe algorithm takes into account Mach and Reynolds number effects.

Since the dependence is small, the pressures measured by the probe in an unknown flowfield can be

used with a calibration file from any Mach and Reynolds number to estimate the angles within a

few degrees and the velocity magnitude within a few percent. Approximate values for the Mach and

Reynolds numbers for the flow are also obtained. Reducing test data with a calibration file from the

same flow conditions (same Ma and Re numbers) will yield the most accurate predictions, thus to
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obtainhigh prediction accuracythroughoutthe entiresubsonicregime,it is necessaryto calibrate

the probe over a wide range of Mach and Reynoldsnumbers.By reducing test data from an

unknown flowfield with a rangeof calibration files, it is possibleto find the best-predictedflow

conditions by proper interpolation between the results from the separatefiles. Everett et al.6

introduceda compressibilitycoefficient to correctfor theMachnumbereffects.A similar approach

was initially attemptedhereusinga compressibilitycoefficientin conjunctionwith the interpolation

basedon the coefficients bl and b2. No consistentprediction accuracywas achievedwith this

method.Thus in the luxury of having theprobescalibratedat awide rangeof Mach andReynolds

numbersin small incrementsa data reductionbasedsolely on the coefficients bl and b2 was

chosen.The algorithmcreatesa probespecificdatabaseusinganynumberof calibration files, and

reducesa test point from an unknown flowfield with all of the calibration files provided in the

databaseand storesthe predictedvaluesfrom eachof thesedata reductions.Average predicted

•MachandReynoldsnumberarethencalculatedandthedifferencesbetweentheseandtheMach and

Reynoldsnumberin the individual calibrationfiles areusedto calculatean interpolation function.

This function givesthe final resultsbasedon interpolationbetweenthe predictedvaluesfrom the

closestfiles in termsof MachandReynoldsnumber.Theinterpolationfunction is givenby:

N

I-i
j:l (18)

Wi -- N N

d pEl-lj,k
_=1 j=l

Where N is the number of files used in the interpolation, wi are the individual weights for each of

the N files, dj is the Euclidean distance between the average predicted Mach and Reynolds number

and the Mach and Reynolds in each of the separate files. P is an exponent to increase the sensitivity

and enforce mostly use of the files that are closest in terms of the Euclidean distance in the Ma-Re
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plane.The final valuesarecalculatedby usingtheindividual weightsmultiplied with thepredicted

valuesfrom eachof theclosestN files:

N

f_na_ = _--'_(Wi "fi) (19)
i=l

Where ffinal is any of the final estimates for the two flow angles and the pressure coefficients A t and

A s, and fi (i=l,...,N) are the predicted quantities from each of the N closest files.

UNCERTAINTY ANALYSIS

The uncertainty analysis presented below is based on the techniques discussed in Moffat it

To find the uncertainties of the local least-squares data reduction algorithm an extensive analytical

and numerical analysis was performed. The procedures to determine the uncertainty of the

algorithm consisted of:

- A combined analytical and numerical analysis of how uncertainties in the pressure

measurements propagate through the algorithm

- Evaluation of the uncertainty of the LLS surface fitting procedure

- Evaluation of the uncertainty of the algorithm using data verification test

Attention should also be directed to the problem of bias or systematic error, which is error

that is roughly constant throughout the sampling of the data. Such errors can be due to errors in the

reading of the reference manometer, hysteresis and temperature drift of the pressure transducers and

errors in probe positioning. Extreme care was taken, during probe calibration, to eliminate all bias

errors.

First, the uncertainty of the pressure measurements was estimated. Taking into account the

pressure scanner (ESP from PSI Inc.) specifications, the frequency and type of transducer

calibration, the reference manometer uncertainty and the AJD conversion uncertainty, the pressure
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measurementuncertaintywas estimatedand is presentedin figure 13.As seenin this figure, the

pressuremeasurementuncertaintywashighestat Ma=0.1(dynamicpressureq lessthat 0.3 psi). At

all otherconditionstheuncertaintywas from twice to tentimessmallerthan theuncertaintyat Ma-

0.1. As it was previously discussed,this increaseduncertaintyat Ma=0.1 is suspectedto be the

reasonfor the observedReynoldsnumberdependenceof thecalibrationat Ma=0.1(figures 10 and

12).Errors in probepositioningwerenegligible,sinceboth pitch andyaw positioningmechanisms

wereequippedwith opticalencodersthat ensuredanaccuracyof 0.01degrees.

Analysis of Error Propagation through the Algorithm

Two different approaches are often used to estimate the uncertainty, the worst-case approach

or the constant-odds approach. In the present analysis the constant-odds approach is followed. The

uncertainty 8R of a function R that depends on n independent variables xi, with associated

uncertainty Sxi, is given by:

_: _1-1 _X 1 _ C;_X 2 _X2 -]- [O_X n

The general form for constant-odds uncertainty prediction was given by Kline and McClintock 1_.

This approach requires that each of the xi's be independent variables and that they have a Gaussian

error distribution. Each of the coefficients (R = b,_, b_, be, b,, At and As) were differentiated with

respect to the pressure terms (xi = Pi) they depend on. Based on equation 20, eight expressions were

derived for the uncertainty of all non-dimensional pressure coefficients (four for low-angle flow:

Sb,_, Sb_, SAt and SAs, and four for high-angle flow: Sb0, Sb,, SAt and SAd.

In evaluating the propagation of uncertainty through the LLS algorithm, the "jitter"

approach, as described in ref. 12, was employed. A modified version of the local least-squares data
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reductionalgorithm wascreatedin order to evaluatethe uncertaintypropagation.It was assumed

that the error in the pressuremeasurementsis normallydistributed.To generateperturbed(by the

pressure measurementuncertainty) pressure values, a Gaussian distribution of pressure

perturbations(errors) was createdwith zero meanand standarddeviation equal to the pressure

measurementuncertainty obtained from figure 13. The data reduction algorithm uses 6 local

calibrationdatapoints to estimateonetestpoint.The 7 port pressuresfor eachof these7 points (6

calibration points and 1 test point) were perturbed using random values from the pressure

perturbationfile. Theseperturbedpressuresweresubsequentlyusedto calculatethe uncertaintiesof

all non-dimensionalpressurecoefficients,throughthe uncertaintyexpressionspreviously derived

for thosecoefficients basedon equation 20. Theseperturbed,non-dimensionalcoefficients are

subsequentlyusedby theLLS algorithmto generateperturbedinterpolationsurfaces.Thereduction

is executedand the results from the perturbedanalysisare comparedto the results from an

unperturbedanalysis.Theuncertaintyis definedasonestandarddeviationof thedifferencebetween

the resultsobtained from the unperturbedanalysisand the resultsobtained from the perturbed

analysis(table 1). As it canbe seenfrom table 1,no distinctionwasmadebetweenlow-angleand

high-angleflow in theevaluationof theangleuncertainty.In fact,asit will beshownlater,the low-

angleflow regimehasangleuncertainties(pitch,yaw)significantlysmallerthan thosein table 1.

Surface Fit Evaluation

An estimation of the errors introduced from using a linear least-squares interpolation

technique was performed. The surface fitting procedure in many conventional data reduction

algorithms is found to be one of the greatest sources of error. A global surface fitting procedure will

complicate the topology of the surface because the probe tip surface on a small probe usually
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contains irregularities that will be reflected in the measuredpressuresand non-dimensional

coefficients.Even smallersectorsurfaceshavetheseproblemswhen trying to fit an interpolation

surfaceto all calibration points in that sector,sinceeachsuchsectormight contain hundredsof

calibrationpoints.A local least-squaresapproachcanbe more accurate,sincethe surfaceis only

coveringa small segmentof the calibrationregimeand usesonly a few calibration datapoints. A

linear local least-squaressurfacecancreatea very goodapproximationto the actualdataassuming

that thereis a densegrid of calibrationdata.

A procedureto validate the accuracyof the LLS routine was performed using a known

model surface(onemodelsurfacefor eachoneof the dependentflow variablesc_,13,0, 4, At, As).

For each of the separate sectors on a 7-hole probe, a sample/model least-squares surface was created

using all the calibration data points belonging to that sector. A second order polynomial surface was

created using least-squares surface fitting soft-ware. The resultant error (R 2) of fitting a second order

surface over all the calibration data points in each sector was reasonably good. The second order

surface was now regarded as a model surface, since it contains similar characteristics to an actual

calibration surface. Because the polynomial expression is known for the surface, a grid of non-

dimensional coefficients (bl, b2) was created with corresponding exact values for the flow

properties (a, [3, 0, 4, At, As). The new grid (simulated calibration grid) was created to have similar

density and distribution of data points as a typical calibration database. A grid of test points was

also created, with none of its points coincident with the points of the simulated calibration grid. For

these test points, the exact values for the flow properties are also known. The new test file is

reduced using a modified version of the LLS algorithm that uses the simulated calibration points.

The error is calculated as the difference of the LLS calculated flow variables and the exact (known)

flow variables for the test point, calculated by the polynomial expression for the model surface. The
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data reduction also selectswhich calibration points to use in the data reduction such that this

methodcanalsoserveasameasurefor thequality of thecalibrationdatapoint searchandselection

routine.

As previously discussed,the actualcalibrationsurfacesaremost probably not smooth2 nd

order polynomial surfaces over an entire sector and they might exhibit larger curvature locally.

Several "worst case" examples were analyzed by fitting a higher curvature surface through fewer

data points. However, the results from this analysis showed that the contributing errors due to the

local least-squares surface fit are negligible. Discrepancies between the fitted surface and the model

surface were on the order of 10 .5 degrees for angle calculations and 10 -3 percent for velocity

calculations.

Evaluating the LLS Algorithm Using Test Verification Files

When calibrating multi-hole pressure probes a common practice is to record a separate test

file with points not coinciding with the calibration data points. The pressures and the angles for the

test points are recorded in the same manner as for the calibration points, such that they can be used

for verification of the quality of the calibration and the data reduction algorithm. Several

verification files from the probes calibrated at the PCT facility at NASA Langley were used to give

a measure of the uncertainties expected when reducing an actual test data file. Error histograms,

calculated for Probe 1 using a verification test data file, are presented here. The verification data file

was recorded at Ma=0.5 and Re= 11.106m 1. The quality of the calibration and the data reduction is

measured by the discrepancies between the angles and velocity magnitude in the verification file

and the predicted angles and velocity magnitude. These discrepancies are referred to as the error (e)

and are presented in the histograms of figure 14. The error (its absolute value) is represented along
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thehorizontal axis,while the heightof a histogrambar is proportionalto the numberof points in

that specific errorbin. This numberis also indicatedexplicitly, over thebar. The uncertaintywas

subsequentlyderivedby calculatingthestandarddeviationof theerror.Theuncertaintiescalculated

this way are listed in table 2. As seenfrom tables 1 and 2 thereis goodagreementbetweenthe

calculateduncertaintyand the measureduncertainty from the data verification files. As it was

previously mentioned,one can see from Table 1 that the low-angle flow regime has angle

uncertainties(pitch,yaw) significantly smallerthanthehigh-angleflow regime angleuncertainties

(cone,roll).

CONCLUSIONS

The multi-hole pressureprobe is a cost effective, robust and accurate method for

determining the three-dimensionalvelocity vector and Ma and Re numbers in any unknown

subsonicflowfield. For steady-statemeasurements5- and 7-holeprobesarecapableof resolving

flow angularitiesup to 75 degreesandsuccessfullypredictflow conditionswith high accuracy.

The non-dimensionalangleand pressurecoefficientsusedinternally in the data reduction

algorithm have an almost negligible dependenceon Reynoldsnumberand a more pronounced

dependenceonMachnumber.A testpoint at acertainMachandReynoldsnumbercanbe reduced

with calibrationdatatakenat completelydifferentMachandReynoldsnumberandstill predictthe

velocity vector,bothmagnitudeanddirectionwith reasonableaccuracy.Howeverreducingtestdata

with a calibration file at the sameMach and Reynolds number will yield the most accurate

predictions.Thus to obtain high prediction accuracythroughoutthe entiresubsonicregime,it is

necessaryto calibratetheprobeatawide rangeof MachandReynoldsnumber.
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An uncertaintyanalysisof the7-holeprobemeasurementswasperformed.Threeprocedures

were followed to determinethe uncertainty:a combinedanalyticalandnumericalanalysisof how

uncertaintiesin thepressuremeasurementspropagatethroughthe algorithm,uncertaintyevaluation

of the LLS surfacefitting procedureand evaluationof theuncertaintyof the algorithmusing data

verification test files. The results from the surfacefit analysisshowedthat the contributing errors

duetojust the local least-squaressurfacefit arenegligible.Theseuncertaintieswereon theorderof

10-5degreesfor anglecalculationsand 10 .3 percent for velocity magnitude calculations. Both the

analysis of the error propagation through the algorithm and the uncertainty evaluation with test

verification files gave similar results. Angles can be predicted to within 0.6 degrees with 99 %

confidence and velocity magnitudes can be predicted to within 1.0 % also with 99 % confidence,

while the corresponding uncertainties (standard deviation of the error distribution) are less than 0.2

degrees in angle prediction and less than 0.35% in velocity, magnitude prediction.
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Data Standarddeviation Units

Pitch/Cone 0.1369 [deg]

Yaw/Roll 0.1972 [deg]

Velocity 0.3212 [%]

Table 1, Johansen et al.





Quantity Standarddeviation Units

Pitch 0.0495 [deg]

Yaw 0.0547 [deg]

Cone 0.1465 [deg]

Roll 0.1855 [deg]

Velocity 0.3426 [%]

Table 2, Johansen et al.
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Introduction to PROBENET

This is a set of guidelines to familiarize the user with the features of PROBENET.

PROBENET is an extensive code tailored to deal with the calibration of 5 and 7 hole

probes in incompressible and compressible flow environments. Although the user can design
his/her own networks to optimize performance, he/she can also leave it to the code to select

the optimal networks for the calibration. This will be explained in detail later.

PROBENET has been extended to include the calibration of probes in the

compressible regime as well and the user is given an option in the main menu for calibrating

the probe either in the incompressible regime or in the compressible regime. Based on whether

the probe is calibrated in the incompressible or the compressible regime, there are two

feedforward codes to predict the parameters like the pitch(or cone) , yaw(or roll) and the
velocities from the test data file.

,%

}

Figure 5: The 7-hole domain split up to enhance neural network performance

Neural Network Training Algorithm

The PROBENET training algorithm accepts as its input a raw pressure data file

containing the calibration data for the probe. This data file is then converted to training vector

files for every sector of the probe. To improve the efficiency and performance of the neural

networks the high angle regimes of the probes were split up as shown in fig.5. This means that

a 7 hole probe would have 19 sectors and a 5 hole probe would have 13. The training vector

files are used to train the neural networks and an output binary file is then created which

contains all the trained network information. This binary file is then used by the feedforward

procedure to reduce any new pressure data acquired with the calibrated probe to the velocity
components and the orientation angles.





One of the salientfeaturesof PROBENETis the rangeof available control over the

network architecture. Typical commercial codes allow for an input layer, a few hidden

layers(limited number) each one with a specific activation function for the entire layer, and an

output layer with its activation function. But PROBENET allows the user to specify different

activation functions at each node. The figure below (fig.6) shows a typical network structure

which could be used to train and predict the pitch angle. The input layer accepts two element

input. In the figure, fl through f9 are the activation functions applied at each node.

PROBENET currently uses several user-defined activation functions that are assigned to

individual network nodes. These include constant, linear, quadratic, cubic, logsig, tansig,

cosine, sine and exponential functions. These functions can be customized and new activation

functions can be defined by the user.

Pitch Angle

layer 2 _

layer 1

B t Be

Figure 6: A typical network structure that takes a two element input to train and predict the

pitch angle.

Calibration data file format ( trnprb.dat on diskette) for a 7 hole probe in incompressible
calibration :

0.0000 -175.0500

1 13.5660

2 5.7900

3 6.1960

4 5.6980

5 6.0880

6 5.9430

7 5.7510

8 13.6060

0.0000 -171.4500

1 13.6290

2 5.8080

3 6.2200

4 5.7360

5 6.1030





6 5.9810
7 5.7540
8 13.6620

In the samplefile showneachgroup of dataincludes9 lines: Coneangle, roll angle
(both in degrees)followed by theeightpressures(in torr) eachlabeledby an integer.The first
sevenpressuresare from the ports of the probewhile the eighthone is the tunnel dynamic
pressure.All pressuresarewith respectto a tunnel referencepressure.The order of these
pressuresis importantandshouldcorrespondto theportnumberingof fig.2.

Thesameformat hasto beadoptedfor thedatafile with the testpoints.However, the
freestreamdynamicpressureis notnecessaryin thefeedforwardmode.

Calibration data file format (2 O1 caLdat on diskette) for a 7 hole probe in compressible
calibration:

The input data file for a compressible formulation should contain data to be organized

in the following order:

Probe number

Mach number

Reynolds number

Total pressure (psi)

Static pressure (psi)

Total temperature (F)

q compressible (psi)

velocity (It/s)

density (lb-m/ft 3)

cone angle (deg.)

roll angle (deg.)

Pl

Pz

P3

P4 (PI through P7 in psi)

P5

P6

P7

PI through P7 correspond to the seven pressures from the seven ports. Again the order

in which the pressures are recorded is important and is decribed in fig.2. This format of the

file can be easily generated by using the preprocessor program described in section .......

As already mentioned, to enhance the performance of the neural networks, the six

peripheral ports (fig. 2) were split up as shown in fig.5 for training purposes alone. It should

be noted from fig.5, for example, that subsectors 2,13,14, correspond to the original sector 2

(fig.2), while subsectors 3,8,19 correspond to the original sector 3, and so on. For the purposes

of the present discussion the subsectors numbered 2 through 7 will be referred to as high-low

sectors and those numbered 8 through 19 will be referred to as the high-high sectors.





Training Procedure

When the user executes the command PROBENET.EXE at the dos prompt, the

following menu is displayed:

---PROBENET NEURAL NETWORK CALIBRATION PROGRAM---

******** Multi- Hole Probe Calibration ********

EXIT." Exit program

MAKE: Make Vector file from pressure data

OPEN." Open an existing vector file

START." Start calibration algorithm

INFO: Display program information

OPTN." Options menu

SNET." Single network training program

PROBENET->

To start off with the calibration, the first thing that needs to be done is to convert the

raw data calibration files to a form that would be used by the neural networks for training

purposes. Therefore the user has to generate what are called the training vector files from the

input data file. To do this the "MAKE" option should be selected. This option prompts the
user to enter the name of the data file that is to be used for calibration and a name for the

training vector files as well.

When all the information has been entered the training vector files are generated for all

the nineteen sectors of the probe. A typical training vector file generated has the following
format:

14 .51499 -.21895 -.06704 .63609 32.00000 -4.77060

14 .50717 -.51558 -.06319 .64118 32.02710 -8.76660

14 .47563 2.33399 -.44271 .50513 32.98500 25.90520

14 .51408 1.95100 -.31931 .54406 32.84451 22.25660

14 .54029 1.59981 -.22315 .57919 32.68000 18.56950

The first field in the training vector file record denotes the sector having the maximum

pressure. Sector 14 corresponds to port 2 (fig.5). The two real numbers that follow are the two

pressure coefficients that are the inputs to the neural network. The last four values are the

parameters that are used to train the neural networks namely, At, As, O(ora),qk(orfl)

respectively. When "MAKE" is selected and the training vector files are generated the

extensions for the training vector files are automatically set to .cfA through .cfS, where the

letters A through S are indicative of the sectors 1 through 19.

The "OPEN" procedure opens a specific training vector file that has already been

created using the "MAKE" procedure.

The "START" option initiates the training of the neural networks with the training data

contained in the training vector files generated. When "START" is selected the user is asked

to select a probe type (5 hole or 7 hole) and the user is asked to make a selection:





You may choose to initialize the network structure and the weights with either:

(1) the optimal network database

(2) a previously trained Network lnformation file

The design of a neural network structure that is optimal for a certain system is time

consuming and tedious. The number of hidden layers, the type of activation function, etc. are

some parameters that the user has to vary in the process of optimizing a network structure.

PROBENET has built within itself a set of such networks to spare the user from the lengthy

optimization process. For this the user should select option (1) from above. PROBENET then

initiates an optimization procedure that does not require the intervention of the user. The code

trains the networks with the calibration data that is provided, compares their relative

performance and decides on which network is optimal for the probe. It then creates a binary

output file - the network information file - with the details of the trained net-works. This file

serves two purposes:

a) it is the input to the feedforward subroutine

b) it can be used to further train a network when option (2) is selected from above.

When option (2) is selected the user will be asked to enter the filename (without the

extension) of the particular Network Information file that was generated while using option

(1). When this option is selected the code does not perform any optimization but merely trains
the networks described in the Network Information file.

When option (1) or (2) is selected the user will also have to

a) Enter the filename (without the extension) of the output Network Information file.

b) Specify the convergence value in terms of the target absolute mean error.

The training will be terminated if:

a) the maximum number of training cycles is reached or,

b) the absolute mean error drops below the targeted one.

It has been seen from experience that the maximum number of training cycles when

option (1) is selected should be between 400 and 500 for better results. In this first phase of

training, the larger the maximum number of cycles the lesser the necessity to refine the

surfaces that do not perform well (will be explained in detail later). If the time required to

calibrate the probe is not of great concern then it is recommended that the maximum number

of cycles be around 2000 or even greater. When option (2) is selected the maximum training

cycles to converge to the target mean error is decided by the code. The suggested value for

CONVERGENCE for option (1) is in the range 0 to 0.3.

When "OPTN" is selected the user can specify all the parameters to be used in the

training process. Learning rate, momentum, increment, decay, buffer margins, etc. are some of

them. Every time the user has to specify such values, the code guides him/her by indicating a

range of typical values for that particular parameter.

The user can design his/her own network by selecting the "SNET" option of the menu.

This will place the user in an individual network training environment. Suppose the user does

not leave the optimization process to PROBENET or that the user finds some surface in some

sector has not been trained well, then this option helps the user to design and test his/her own
network or refine a bad surface. It should be mentioned here that the Network Information file

contains information about all the 76 networks: 19 sectors (7 hole probe, fig.5) with each

sector being associated with 4 networks corresponding to the flow variables At, As, 0 (or a ),





_b (or fl). The user can replace any of these 76 networks. In doing so, the user has to first

design the network. This is done in the form of Initialization files (with extension .IN). A

sample Initialization file is given below to illustrate its structure:

Network Initialization file

sector = 1

surface

maxcycles -- 2000

convergence -- 0.00

num_layers = 4

num_nodes(1) = 2

num_nodes(2) = 4

num_nodes(3) = 4

num_nodes(4) = 1

Activ Func(2)= 9 9 9 9

ActivFunc(3)= 1 1 1 1

Activ Func(4) = 1

learning rate= .01

LR momentum = .95

LR increment = 1.05

LR decrement = 0.7

LR threshold = 1.05

= 1 (1 refers to the variable At)

( 1 input layer, 2 hidden layers and 1 output layer)

( input layer)

( 1st hidden layer)

(2 na hidden layer)

(output layer)

( 9 refers to the log-sig activation function)

( 1 refers to the linear activation function)

Activation functions must be listed on same line with 2 spaces between integer values.

LR refers to the learning rate the theory of which has been explained in the Artificial learning

section. (It is advised to the user that the same learning rate parameters be retained for any

new structure defined by the user.)

The contents of these files are fairly self explanatory. The specific network has 4

layers with layer 1 being the input layer and layer 4 being the output layer. PROBENET





currentlysupports9 activationfunctionsandeachof theseis identifed by an integer from 1
through 9. A list of the availableactivationfunctions and their correspondingintegersis
providedunder the option "ACTV" of the "OPTN" menu.The variousactivationfunctions
built within PROBENETare:

1 Linearactivationfunction
2 Quadraticactivationfunction
3 Cubicactivationfunction
4 Tan-sigactivationfunction
5 Sineactivationfunction
6 Cosineactivationfunction
7 User-definableactivationfunction
8 User-definableactivationfunction
9 Log-sigactivationfunction

Whenthe userhascreatedhis/hernetworkstructureandwants to test it, he/she must

choose the "INIT' option from the "SNET" menu and then choose the "TRAIN" option. The

code will then ask the user for other information namely, the filename, surface to be trained,

etc. The surfaces At, As, 0 (or o_ ), ¢ (or fl) are referred to as 1 through 4. The mean error

displayed during the training process gives a good picture as to the performance of the

network. If the user is satisfied with his/her design i.e., if the defined network when trained

and used for prediction gives errors within the allowable range, then he/she can choose the

"NETIO" option and "LOAD", "WB" options to write the new network information in the

Network Information file. The same process needs to be followed for refining a network for

any surface that has not been trained well which will be explained in detail later.

It is possible to train the probe for multiple Mach numbers by filestreaming. The user

should enter all the relevant data that is to be input to the code into a single file (say, RUN) in

different rows and then type the command PROBENET<RUN at the dos prompt. This will

start the training process and completely train for all the calibration files generating
corresponding Network Information files without the user intervention.

Single-file feedforward procedure

Once the training is completed, it is necessary to validate the training to check if the

trained networks yield good prediction accuracy. So, once the Network Information file has

been generated for a particular test file, it can be used in the feedforward mode to predict the

flow variables from pressure data acquired with the calibrated probe. However, this procedure
can also be used for prediction in the real environment.

The feedforward code for incompressible formulation can be executed by entering

PROBEINC.EXE at the DOS prompt while the feedforward procedure for the compressible
formulation can be executed by entering PROBECOMP.EXE. The format for the test file used

for predicting results in the real environment is as described:

For the incompressible formulation, the test file should have the seven

pressures (in torr) in a column format with one line space between each set of data if

prediction is to be done in a real environment. For validation purposes, the test file can have
the same format as the calibration file.





1 13.5660

2 5.7900

3 6.1960

4 5.6980

5 6.0880

6 5.9430

7 5.7510

1 13.6290

2 5.8080

3 6.2200

4 5.7360

5 6.1030

6 5.9810

7 5.7540

For the compressible formulation, the test file should have:

the probe number, the reference pressure (in psi), the total temperature (in degrees F)

and the seven measured pressures (in psi, relative to the reference pressure) in the same order

in a single row. Again, for validation purpose, the test file should have the same format as the
calibration file as described earlier.

Validation is done to check if the networks have been trained well. In this case the

error between the actual values and the predicted values will be written to the output file as

well. However, if these procedures are used for prediction in a real environment, the predicted

values alone are written into the output file. In the validation mode, the output file that is

generated contains the following data:

test point number, predicted u, v, w components of velocity (in if/s), actual velocity

magnitude (in if/s), predicted velocity magnitude (in ft/s), velocity magnitude error (in if/s),

At, predicted At, As, predicted As, actual pitch/cone angle (in deg.), predicted pitch/cone

angle (in deg.), pitch/cone angle error (in deg.), actual yaw/roll angle (in deg.),

predicted yaw/roll angle (in deg.), yaw/roll angle error (in deg.), actual Math number,

predicted Mach number ( these two fields are generated only for the compressible formulation

case), port number to which the test point corresponds and finally the subsector to which it

corresponds as per our definition of the sectors (fig.5).

This is useful for refinement purposes as explained later. The algorithm used for the

feedfoward procedure is explained in a later section.

Calibration File Refinement

During the first phase of training when the optimal neural network is being selected,

we train each network typically for 400-500 cycles. The code picks the network that performs

well in these 500 cycles as the optimal network. It has been seen from experience that some

networks that perform well for the first 500 cycles do not train very well in the second phase

of training where the optimal network is trained further. On the other hand, networks that do

not train very well in the first 500 cycles might do well in the second phase of training. For

this reason, it sometimes becomes necessary to track the bad network manually and refine it.





• To eliminate this manual refinement it is advised that the user train the networks in the first

phase for 2000-3000 cycles in which case the user would have to compromise on the time

taken for training. Typically, if a low number of training cycles (about 500) is selected in the

first phase of training it is seen that out of a test file that contains around 1500 test points, the

user might have to manually refine the surface As for 2 to 3 subsectors.

The code in the Validation mode allows the user to check if the already trained

networks perform well by generating the error values for the predicted data. In the output file

generated in the feedforward mode the user can identify those sectors or surfaces that have

large errors. These surfaces call for refinements which could be performed as described
below:

The user should make note of the sector and the surface( At, As, pitch/cone or yaw/roll)

whose predictions have errors more than the permissible limit. Then the user must select the

'SNET' option from the main menu. This option displays another menu:

---PROBENET NEURAL NETWORK CALIBRATION PROGRAM---

******** Single Network Training ********

EXIT : Exit program

MAKE : Make vector file from pressure data
INIT : Initialize network structure

NETIO : Read and write network information data

VIEW : Display network to screen
TRAIN : Train new network

RETRN: Retrain an existing network
RUN : Run trained network in feedforward mode

INFO : Display program information

OPTN : Options

Next the user must select 'OPTN' to enter the probe type (5 hole or 7 hole probe) and

number of sectors (19 for a 7 hole probe or 13 for a 5 hole probe). Then the user must select

the 'INIT' option. Under this option the user needs to specify the network architecture that

he/she is going to try for a particular surface. It is strongly advised to the user that the network

architectures used for refining surfaces be selected from the existing database of network

structures named as bpb0001.in through bpb0020.in. After entering the filename that contains

the network architecture, the user must select the 'TRAIN' option from the above menu. This

option further calls another menu on the screen:

---PROBENET NEURAL NETWORK CALIBRATION PROGRAM---

*********** Training menu ***********

EXIT :

RAND:

SPIKE :

VIEW :

START:

Back up to previous menu

Exit program

Create random initial weights

Perturb existing weights

Display weights to screen
Train new network





From this menuthe usershouldselectthe 'RAND' option followed by the 'START'
option.This is to randomizethe initial weightvectors.Thentheuserwill be askedto specify
the vector file used for calibration,numberof cyclesand other relevant information. It is
advisedthatamaximumof 4500or 5000cyclesbeusedfor calibration.

Oncethenetworkhascalibratedthesurfaceit is time for testing the calibratedsurface.
Sotheusernow hasto backup two menusby usingthe '..' optionand selectthe 'RUN' option
from themenudisplayed.Thecodewill againguidetheuserto input relevantinformationand
generateanoutput file with the actualvaluesfor that surfacebeing trained, predictedvalues
andtheerrorbetweenthe two. If the erroris acceptable,theuserneedsto selectthe 'NETIO'
option and then 'LOAD' followed by the 'WB' options to write the information for this
particular network in the Network Information file. This way refinement of surfaces is
accomplished.However, it is seenthat on an averagethe code'sjudgement regardingthe
optimal networkstructurefor aparticularsurfaceis fine. Generally,it hasbeenseenthat the
anglepredictionsarefine but thevelocitypredictionsmaysometimesgive largeerrors.Under
suchcircumstancesthe usermayhaveto refinethenetworksfor the correspondingAs to get
betterpredictionsfor velocity.Again, manualrefinementcanbeeliminated if theuserselects
thenumberof trainingcyclesaround2000-3000in thefirst phaseof training.

Multi-file feedforward scheme

The multi-file prediction scheme is a 2-D interpolation scheme based on the Reynold's

number and the Mach number. Typically, when a probe is trained, the naming convention

used for the Network Information file generated by the code is as follows: trn3_03.bin where,

the digit 3 stands for the probe number, and 03 stands for the Mach number for which the

probe has been trained (M=0.3). The extension is automatically generated by the code. When

a probe has been trained for all the Mach numbers, for example, 0.1 through 0.8, we have a set

of Network Information Files for the probe. It should be borne in mind that if the probe were

calibrated in higher Mach number flows close to the transonic regime the results would not be

accurate.

The prediction scheme enables the user to put the pressure data corresponding to

different Mach numbers in a test data file and perform the data reduction for different Mach

numbers at a time. For this it should be ensured that the Netnvork Information files

corresponding to all the Mach numbers have already been generated or in other words the

probe has already been calibrated for all Mach numbers. To use the prediction scheme, the

user has to first generate the lookup file which can be done by simply _'ping LOOKUP at the

dos prompt which will generate the lookup file containing the training file name, the

Reynold's number and the Mach number corresponding to that training file. Once this is done

the user should simply type FEEDFORIE.EXE at the dos prompt. The code will guide the user

regarding the information that needs to be input. The test files should have the same format as

described under the Single-file feedforward scheme.
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INTR OD UCTION

MultiProbe is a data reduction program for 5- or 7-hole pressure probes. The program is

versatile in the sense that it accepts almost any data format, units, probe type and

configuration and flow type. The program can successfully reduce data from probes in any

subsonic flow and predict the flow velocity vector, both direction and magnitude with a high
degree of accuracy.

DESCRIPTION OF THE PROGRAM

MultiProbe uses at least one calibration file (raw data file) and converts that data file to new

(binary) data file that can be used to reduce probe data from unknown flow fields. There are a

number of input variables that must be entered into MultiProbe to ensure correct data

reduction. To simplify the reduction all of these values are stored in a probe database. The

probe database should also be given a name. When preprocessing the raw calibration data

files, the user must go through several steps to explain the units and format of the raw data.

The raw data file is then converted to the MultiProbe internal format (metric units) and a

binary file is created. The user is asked to give the binary file a name. Note: this file is the

calibration file to use later when data reduction is performed. It is advised to store the probe

profile database also, the user will be prompted if he wants to save the profile. Thus there is a
minimum of four data files the user will encounter:

1. Raw calibration data file (*.???)

2. One preprocessed calibration data file (*.mpr)

3. Probe profile (*.MPP)

4. Raw pressure data from probe in unknown flowfield (*.???)

Saving the probe profile will later enable the user to open it and reduce data without re-

preprocessing data or configuring the program. The probe profile contains all the information

about the files, formats and units in the reduction. It also holds the name of the preprocessed

calibration file, so that the user does not have to enter the calibration file to use when reducing

data. MultiProbe 30 is currently only capable of holding one calibration file per profile, but

will be later extended to hold multiple files and reduce a given test file with one or more of

the files in the profile.

The methodology of reducing probe data is:

1. Preprocess the raw calibration data. See Preprocessing Calibration Data.

2. Optionally save the probe profile.

3. Reduce test data. See Reducing Test Data from Unknown Flow Using A Calibrated Probe.

4. Optionally graph the results. See Analyzing Reduced Data.

There are several other options available in MultiProbe they will be described in detail in this
manual.





PREPR OCESSING CALIBRATION DATA

Use Data I Preprocess I Wizard on the main menu.

Step 1. Calibration data files.

Select one (1) calibration file for a probe. There will be an option in a later version to select

multiple files.

(Note: Make sure that all of the calibration files have the same format if multiple files are

preprocessed simultaneously. If they have different formats preprocess them one-by-one.)

Step 2. Data file format.
Select either:

1. Aeroprobe format:
This format is:

Number of points Lambda

(Ttot XXX)*
Cone Roll

1P1

2 P2

3 P3

4 P4

5 P5

6 Ptot*

*Only for certain files

*For 7-hole probe there are 7 pressures and Ptot is in #8

Cone Roll

1 P1

. Data in columns (generic)

Select any type of data in columns where each row of data correspond to a set calibration

point with discrete angles

Step 3.
1.

2.

3.

.

.

Probe type and calibration orientation.

Select 5- or 7-hole probe.

Probe type: Conventional is only available. Fast response might be implemented later.

Probe shape. Determine the shape of the probe, either:

3.1. Straight probe.

3.2. "L" -shaped or "Elbow" probe.

3.3. "C" -shaped or "Cobra" probe.

Probe tip shape.
4.1. Conical.

4.2. Hemispherical.

Calibration angle system.

5.1. Cone/Roll system (typical for straight probes).

5.2. Pitch/Yaw system (typical for L or C-shaped probes).





6. Selecttheprobeport numbering,lookinginto theprobetip. Note theangleconventionand
thereferencesurface(for straightprobes)or stemlocation(for L or C-shapedprobes).

7. Enter anameor commenton theprobe.(Forthereferenceof theuser).

Step4. Referencepressure.
Reference pressure. Note: This pressure can be omitted if the static pressure, the port

pressures and the total pressure in the calibration files are absolute or with respect to the static

pressure (granted the static pressure is absolute).

1.1. Enter the reference pressure manually. Enter the reference pressure for differential

pressure transducers. This pressure is in many cases the atmospheric pressure.

1.2. The reference pressure is provided in the calibration file. Select the column in the

calibration files where the reference pressure can be found.

1.3. Type of pressure in points 1.1. or 1.2. this pressure must be absolute.

1.4. Units of the pressure in points 1.1. or 1.2. select from the list of pressures.

Step 5. Static- and total pressures.

1. Static pressure.

1.1. Enter the static pressure manually.

1.2. The static pressure is provided in the calibration file. Select the column in the

calibration files where the static pressure can be found.

1.3. Type of pressure in points 1.1. or 1.2. this pressure can be either absolute or

relative to the reference pressure in step 4 point 1.

1.4. Units of the pressure in points 1.1. or 1.2. select from the list of pressures.

2. Total pressure.

2.1. Enter the total pressure manually. This pressure is in many cases the static pressure

far upstream of the calibration point. (Use Bernoulli to correct if velocity is not zero

upstream).

2.2. The total pressure is provided in the calibration file. Select the column in the

calibration files where the total pressure can be found.

2.3. Type of pressure in points 2.1. or 2.2. this pressure can be either absolute or

relative to the reference pressure in step 4 point 1 or relative to the static pressure in

step 4 point 1.

2.4. Units of the pressure in points 2.1. or 2.2. select from the list of pressures.

Step 6. Port pressures.

1. Select type of pressure.

1.1. Differential with respect to the reference pressure in step 4 point 1.

1.2. Differential with respect to the static pressure in step 5 point 1.
1.3. Absolute.

1.4. Pressures are voltages.

1.4.1. Press blue arrow to define the slope and offset for pressure transducer in each

of the ports.

2. Enter which column in the calibration file that the port pressures can be found.

3. Select the units of the port pressures. Note this has to be select also if you are using

voltage inputs. (point 1.4.1 .) where the units of the conversion must be entered.





Step 7. Flow Temperature.

1. Select total or static temperature provided.

2. Enter the flow temperature manually.

3. The flow temperature is provided in the calibration file. Select the column in which the

temperature can be found.

4. Select the units of the temperature from list.

Step 8. Angles.

1. Select which column in the calibration file the angles can be found.

2. Select the type of angles used. Cone/Roll system. Will be expanded later.

Step 9. Calibration file format.

1. Enter any number of test points attached at the end of the calibration file.

2. Enter any number of lines of headers, data description number of points etc. Count all

lines of information (count also blank lines) before the actual numbers start.

Step 10. Check of user entered information.

1. Check if the information entered is correct by scrolling through the form.

2. If information is incorrect, go back to the particular form and change.

Step 11. Calibration file analysis. (Form 9).

1. Check if the information provided in the scroll screen is ok.

2. Check if any warnings have been issued. If there are any significant warnings redo the

calibration or check the steps 1 through 10.

Step 12. Save the preprocessed calibration file.

1. Enter a file name for the preprocessed calibration file. A default extension *.mpr is

recommended (you do not need to enter this extension).

*** End ofpreprocessing the calibration file(s) ***

QUALITY OF THE CALIBRATION

The quality of the calibration and the data reduction algorithm can be checked using data

verification points. This can only be done if a number of data points was recorded at the end

of the calibration (a common practice) and if the points were identified in the preprocessing of

the calibration file. See step 9 point 1.

Data I Calibration Test I

1. Select the surface fit type wanted. Currently only LLS is available.

2. Scroll through the screen to see if the reduction parameters are as desired (default values

are typically sufficient for most applications).





3. Changeanyof the reductionparametersby pressingChangeandchangingtheparameters
on thespecificationsmenu.

4. On Proceed a new window will appear.The dataverification will start automatically.
Pleasewait for the datareductionto complete.Oncethe reductionis complete the angle

errors, velocity errors and the total and static pressures can be viewed. There is no need to

press Reduce since the reduction has already been performed.

5. For the angle errors and the velocity errors the minimum, maximum, mean and standard

deviation of the difference between the exact (as given in the calibration file) and the

predicted (by the algorithm) values.

6. Close the screen to return to the main program.

Reducing test data from an unknown flowfield using a calibrated probe

Data [ Reduce Data [

MultiProbe can only accept data formats in columns, that is each row of data consists of

multiple columns with all the necessary information and each row corresponds to one unique

test point.

1. File Format: Enter number of file headers in the data file.

2. Reference Pressure: Enter the type and location of the reference pressure.

3. Port Pressures: Enter the type and location of the port pressures.

4. Temperature: Enter the type and location of the temperature.
5. Proceed. Give a filename for the data reduction results.

6. Wait for data reduction to complete.

7. The reduction results can be found in the file from step 5.

OPTIONS IN THE OUTUP FILE

Specifications [ Output File Format

MultiProbe features a customizable output data file format. The data and the units to be

included in the output file during data reduction is set here. The default mode is including all

values with metric units. A header will be included in the output file which describes the

content in each column and the units used. Following this the data will be in columns where

each row corresponds a specific data point. It is to be noted that for cross reference each of the

points are corresponding to the points in the initial test file, i.e. the first point of the reduced

file corresponds to the first point in the test file and so on. This can be useful when there is

more information in the data file that was not run through MultiProbe. Thus the results from

MultiProbe can be matched with the original data point by point. The format of the output file

allows for easy interfacing with graphing and data analysis tools like TecPlot, Excel etc. For

quick viewing of the data reduction results the graphing tool included with MultiProbe can be

used. See Analyzing Reduced Data.





ANALYZING REDUCED DATA

View [ MultiGrapher

MultiProbe features a simple graphing program that can upload any space delimited text file

given a few conditions; the file must be in columns and must have one (1) line of header

describing what is in the individual columns. The output file from MultiProbe can be directly

uploaded into this grapher.

1. Load the data file. Make sure that it is a valid data format of the file (see above), by

pressing Load.

2. Select the y- and x-axis data from the two combo boxes.

3. Press Update to update the plot.

CALLING MULTIPROBE DATAREDUCTION FROM CUSTOM APPLICATIONS

Multiprobe can be called from any other modem programming language as a dynamic-link

library or dll. The program that needs to be called is LLS.dll. It is important that a calibration

file is first preprocessed using MultiProbe before using the dll. The dll can be incorporated

into e.g. LabVIEW programs for online reduction of probe pressures. The dll only uses 5

inputs:

Input:

1. A preprocessed file. This file must include the full path if located in a different directory
than LLS.dll.

2. The number of ports the probe has. (will be removed in a later version)

3. A pressure array containing either the 5 or 7 pressures. The ordering of these pressures is

very important. Description will follow.

4. Reference pressure.

5. Total pressure.

Output: The dll will return a number of parameters:

1. Calculated angle 1.

2. Calculated angle 2.
3. Ptot.

4. Pstat.

5. Vmagn
6. U

7. V

8. W

9. Mach

10. Re

11. Rho

12. Viscosity

13. Enthalpy





Thecalling formatis asfollows:

LLSReduction (ProbeBase.Files.ProcessedFileName, ProbeBase. Geometry.NumPorts,

press, Pref Ttot, cAng l , cAng2,Ptot, Pstat, Vmagn, u, v, w, Mach,Re, Ts, Rho, Visc, Enth) ;

A more detailed description will follow.

ANAL YSIS OF PREPROCESSED CALIBRATION DATA

Use View I Calibration File on the main menu.

Calibration File:

Step 1. Upload a data file.

1. Upload a preprocessed calibration file. (Typically *.mpr)

Step 2. Analysis of the calibration file.

1. Scroll through the calibration file point by point and read on the screen all the information

that is provided about that particular point.

2. View the port pressures as defined in the default (internal algorithm) definition. See

appendix. A. Definitions.

3. Plot any information provided in the drop down menus on either y- or x-axis.

4. Mark which y axis you want to include on the plot.

5. Note that you can left-click the mouse and drag right for zooming a window or dragging

left to undo the zoom. You can right-click the mouse and pan the window.

ProbeBase: View the information that is entered in the probe database.

This information can be useful for troubleshooting. All of the information available to

MultiProbe during data analysis is displayed here.

UNCERTAINTY ANAL YSIS

Online uncertainty analysis will be implemented.

SPE CIFICA TIONS

Specifications I Surface Fits

Change the data reduction parameters

Specifications ILLS Library

Set the specifications for the DLL operation

APPENDIX A. PORT NUMBERING DEFINITIONS

See also Help I Definitions on the main menu.





Port Numbering
Port orientations used internally by the algorithm. Will be referred to as standard port

numbering.

For 5-hole probes (figure XX).

For 7-hole probes (figure XX).

APPENDIX B. PRESSURE MEASUREMENTS

MultiProbe accepts a wide range of different pressure configurations. Typically calibrations

and experiments are never setup in the same manner, thus MultiProbe can accept most typical

configurations to successfully reduce the data from almost any experiment.

There are a wide range of available pressure transducers but they can be generalized into two

main groups; absolute and differential pressure transducers. Their individual advantages and

disadvantages will not be discussed here; rather the individual applications of the two for

pressure probes. When using differential pressure measurements there is always a (reference)

pressure that the pressure is differential with respect to. This pressure is often the atmospheric

pressure, but can also be the static pressure of the system. Thus MultiProbe accepts that both

the calibration total and port pressures can be differential w.r.t, the static pressure. See table 1

for all possible configurations.

Table 1. Possible

Reference

Pressure

Static Pressure

Total Pressure

Port Pressure

_ressure configurations in MultiProbe.
Absolute Differential

w.r.t. Reference

Pressure

Yes*

Yes Yes*'

Yes Yes**

Yes Yes**

Differential

w.r.t. Static

Pressure

Yes***

Yes***

Other

(calibration

curve input)

Yes

*Not required if all other pressures are absolute or static pressure ts absolute and other

pressures are w.r.t, the static pressure.

"°Reference pressure must be available.

"*'Static pressure must be available (either absolute or differential w.r.t, reference pressure).

MultiProbe works internally with absolute pressure measurements. This means that if

differential pressure transducers are being used, a reference pressure measurement must be

provided. This measurement can either be provided in calibration or test file or manually.

Required pressures for calibration of the probe are static and total pressure, the 5 or 7 port

pressures. If any of the pressures are differential with respect to the reference pressure this

pressure must also be provided. Required pressures for test data using a calibrated probe are

the 5 or 7 port pressures and a reference pressure. The reference pressure of the transducer

must be absolute.





APPENDIX C. ANGLE DEFINITIONS

This version of MultiProbe does not manipulate angles. Angles are referred to as angle 1 and

angle 2 and are generic angles. E.g. is cone and roll angles are entered (as for standard

AeroProbe file format) the calculated angles that is reported by MultiProbe will be Angle 1 =

Cone and Angle 2 = Roll.) Since this version does not use any manipulation of the angles the

velocity components of the velocity magnitude are not calculated.

APPENDIX D. COEFFCIENT DEFFINITIONS

Part 1. Calibration

1) When main sector is center port:

a) Calculate: bt 1 and b21

b) Calculate: bl i and b2': where i=2..7

c) Calculate: Atla 1 and Asla 1

d) Calculate: Atha i and Asha i : where i=2..7

2) When main sector is any of the circumferential ports:

a) Calculate: bl' and b2" where i=maxpl
i-1 and b2 ilb) Calculate:

c) Calculate:

d) Calculate:

e) Calculate:

f) Calculate:

g) Calculate:

h) Calculate:

bl • where i--maxpl (CCW)

bl i+l and b2 i+l " where i--maxpl (CW)

bl 1 and b2 J

Atha i and Asha i" where i--maxp 1

Atha i1 and Asha i1" where i--maxpl (CCW)

Atha i+1 and Asha i+1 • where i---maxpl (CW)

Atla 1 and Asla I

Part 2. Data Reduction (search)

1)
2)

3)

Calculate: bl i and b2 i where i-=maxpl

Search Main Region

a) Search database where maxplv--maxplc

b) From this region assign:

i) An.glel and angle 2

ii) bt' and b/i where i--maxpl

iii) Atxa i and Asxa i where i=maxpl

Search 2 "d closest region

a) Search database where maxp2r--maxplc AND maxplv--maxp2c (to reduce number of

points)

b) Ifmaxpl-r=l (main region is center region) assign:

i) Angle 1 and Angle 2

ii) bl i and b21 (i.e. use the centerport definitions of the circumeferential points)

iii) Atla I and Asla I

c) Ifmaxpl-r>l (main region is circumferential region) assign:

i) Angle 1 and Angle 2





4) Search

a)

b)

c)

ii) Ifm_p2T=l (also maxplc) then:

(1) bl' and b2' where i--maxpla-

(2) Atha i and Asha i where i--maxp 1T

iii) Ifmaxp2-r=CCW(maxp2v) then

(1) bl i1 and b2i-I where i--maxpl-r

(2) Atha i-1 and Asha il where i=maxplT

iv) Ifmaxp2-r=CW(maxp2a -) then

(1) bl i+l and b2 i+l where i--maxplr

(2) Atha i+l and Asha i+l where i--maxplT

3 rd closest region

Search database where maxp3r---maxpl c AND maxp2r----maxp2c

maxp 1-r=maxp3c (to reduce number of points)

Ifmaxplr=l (main region is center region) assign:

i) Angle 1 and Angle 2
ii) bl 1 and b21 (i.e. use the centerport definitions of the circumeferential points)

iii) Atla I and Asla 1

If maxp 1r>l (main region is circumferential region) assign:

i) Angle 1 and Angle 2

ii) Ifmaxp3-r=l .(also maxplc) then:

(1) bl I and b2' where i--maxplT

(2) Atha i and Asha i where i--maxplT

iii) If maxp3-r=CCW(maxp3T) then

(1) bl i'! and b2 i'! where i=maxplv

(2) Atha i1 and Asha i! where i--maxplv

iv) If maxp3v=CW(maxp3r) then

(1) b! i+1 and b2i+! where i--maxplv

(2) Atha i+! and Asha i+! where i--maxplv

AND




